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Abstract—This paper aims to analyze two major quantities
related to the performances of IEEE 802.11p based Vehicle
Ad hoc NETwork (VANET): the mean number of simultaneous
transmitters and the distribution of the distance between them.
This first quantity is directly related to the network capacity as
it limits the number of frames transmitted in the network at the
same time. The second quantity is a crucial element to describe
interference generated by the simultaneous transmitters and to
deduce important wireless properties such as the Signal on Noise
plus Interference ratio, Bit Error Rate or the Frame Error Rate.
We propose two different models to approach these quantities: an
extension of the Rényi’s packing model and a Markovian point
process. Theoretical propositions are compared to simulations
performed with the Network Simulator NS-3. These simulations
have been improved in two ways. The radio model has been
set according to real experimentations. These experimentations
involved two vehicles equipped with IEEE 802.11p wireless
cards. Also, we implemented a realistic vehicles traffic simulator,
emulating highway traffic, that we combined with NS-3.

Index Terms—Vehicular ad hoc network, capacity, CSMA/CA.

I. INTRODUCTION

Inter-Vehicular Communication (IVC) systems have the
potential to greatly influence the road safety as well as to
improve traffic flow by providing the drivers with critical route
information. The IEEE 802.11p [1] standard (also referred
to as Wireless Access in Vehicular Environments, WAVE)
has been standardized to support these communications. This
standard includes data exchanges in-between vehicles and
between infrastructure and vehicles, using ad hoc mode. The

network formed by the vehicles is called a Vehicular Ad hoc
NETwork (VANET).

With the emergence of embedded sensors, a vehicle may
collect information about its environment. The vehicle system
can inform the driver about a local anomaly, a too short inter-
distance with the leading vehicle. Also, it may help to adhere
to road codes such as pavement marking, etc. Data from
these sensors may be exchanged between vehicles in order
to increase the perception of this environment. This extended
vision may help the driver to take appropriate decisions [2].
For instance, inter-vehicle communications can be used to
alert drivers about a dangerous situation, presence of an icy
patch, an accident, etc. As a result, a timely warning may
help the driver to avoid an emergency stop or sometimes, a
collision [3]. Cooperative ITS applications will include safety,
efficiency and value-added services, such as advertisements.
However, it is primarily the traffic safety applications that will
be allowed to use 802.11p.

But, all these applications have different bandwidth require-
ments. Dissemination of warning messages consumes a limited
capacity as these applications generate a few sporadic mes-
sages. On the other hand, autonomous driving systems require
a periodical exchanged of information from the embedded
sensors. Estimation of VANET capacity is thus fundamental,
as it may limit the deployment or the feasibility of such
applications. Therefore, the capacity must be estimated a priori
in order to design applications with the capacity constraint in
mind.

This paper aims to study the network capacity defined as the
number of bits that can be transmitted in average in one second
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per unit of area. We do not consider multi-hop or unicast
end-to-end throughputs. The remaining of this paper uses this
definition of the capacity that can be different from the many
definitions in the literature. The capacity of VANET using
IEEE 802.11p standard is mainly limited by the spatial reuse.
Indeed, in classical 802.11 based ad hoc networks, each node
is equipped with only one network interface card, and all the
nodes use the same channel. Therefore, this channel must be
shared. Fortunately, when two vehicles/nodes are sufficiently
far from each other, they can transmit at the same time without
interfering. The possibility to reuse the medium at different
geographical locations is the so-called spatial reuse. It can
be illustrated through a simple example. Let us consider the
vehicles distribution depicted in Figure 1. We assume that the
current situation is a saturated communication case where all
the vehicles wish to send a frame. The 802.11p MAC layer
aims to select a subset of vehicles that will be allowed to
transmit, such that the distances between concurrent transmit-
ters is sufficiently great to avoid harmful interference between
the transmissions. More precisely, a potential transmitter uses
the CCA (Clear Chanel Assessment) mechanism to set if the
medium is idle or not. This mechanism is detailed in the
next section. The number of simultaneous transmitters (the
number of red vehicles) sets the number of frames that can
be transmitted at the same time. It is then used to evaluate
the number of frames that can be sent per second, from which
we deduce the capacity. Indeed, we modeled the number of
transmitted bits, and implicitly assumed that it corresponds
to the received ones. It corresponds to cases where receivers
are sufficiently close to senders. Derivation of Frame Error
Rates as function of transmitters-receivers distances and mod-
ulation schemes are out of scope of this paper. This capacity,
sometimes called spatial capacity, depends on the area where
nodes are scattered. We consider here a straight road or
highway scenario. The obtained result is then normalized
and expressed in Megabit per second and kilometer. This
normalizing is done in order to present results as an estimate
of the number of bits that can be exchanged on one km and in
one second. We propose an extension of the Rényi’s packing
model [4] to estimate this normalized capacity. Our bound
is based on favorable radio and traffic conditions, and offer
an upper bound on this capacity. We shall show through a
large set of simulations that this bound is achievable under
certain assumptions, and keeps accurate when considering
more complex scenarios on radio environment, data traffic,
and traffic of vehicles. This bound may be used to limit the
transmission rates of the VANET applications. For instance,
for applications that performs regular broadcast at 1 hop, all
the vehicles in the same kilometer will have to share this
capacity. If we neglect the other applications, the application
rate should thus be lower than this capacity divided by the
density of nodes implementing this application (number of
vehicles using this application in 1 km). When considering
multi-hop communications, the capacity per kilometer must
be divided by the number of sources and forwarders of this
application.

The second quantity evaluated in this work is the distribu-
tion of the distance between the concurrent transmitters. This

distance is modeled through a Markov chain taking its value
in a continuous state space. The stationary distribution of this
chain corresponds to the distribution of the distance between
transmitters. It can help us to describe interference generated
by the simultaneous transmitters, and to deduce important
properties on the wireless link such as the Signal on Noise
plus Interference ratio, or the Frame Error Rate.

Our approach has the advantage to model any technologies
using CSMA/CA medium access control, even if our evalu-
ations and simulations focus on the IEEE 802.11p standard.
One important contribution of this paper is to propose accurate
and reliable bound on the reachable capacity, that could be
used as real dimensioning tools for VANET applications.
The proposed models do not give a theoretical bound on
the asymptotic capacity, but instead, offer a very realistic
estimation of this capacity which can be reached in practice
and in real conditions.

The paper is organized as follows. In Section II, the fun-
damental concepts and working mechanisms of IEEE 802.11p
are described. Also, related works are summarized. Assump-
tions made in this paper which are common to our two models
are described in Section III. The extension of the Rényi’s
packing model is presented in Section IV. The distribution
of the distance between transmitters being intractable with
this model, we propose a Markovian model in Section V. In
Section VI, we describe the experimentations we made with a
set of vehicles equipped with IEEE 802.11p interfaces. These
experimentations are used to obtain realistic radio models for
VANET. Also, we used a traffic generator emulating realistic
vehicle trajectories on a highway. Both radio model and traffic
simulator have been integrated in the network simulator NS-
3 [5] to perform simulations as realistic as possible. Theo-
retical and simulation results are compared and discussed in
Section VII. Finally, we conclude in Section VIII.

II. BACKGROUND

A. IEEE 802.11p CSMA/CA

The IEEE 802.11p standard was built based on DSRC
(Dedicated short-range communications) standard, a successor
of ASTM E2213-03 (Standard Specification for Telecommu-
nications and Information Exchange Between Roadside and
Vehicle Systems). The physical layer is composed of Service
Channels (SCH), and a Control Channel (CCH), working
in 5.9 GHz band. SCH channels are reserved for common
applications, whereas CCH channel is dedicated for privilege
applications, especially high priority applications like safety
and warning. The MAC layer of 802.11p manages different
priorities according to the IEEE 802.11e standard. It has 4
queues for different type of messages. These queues contend
internally before a transmission. Each queue has a different set
of parameters in order to respect the priority. After finishing
the internal contending phase, the node applies the CSMA/CA
protocol to access the medium for the selected frame. It began
by sensing the medium to check if it is busy or not. The CCA
Clear Channel Assessment mechanism will be summoned for
this purpose. Depending on the channel state, idle or busy,
the transmission is started or postponed. CCA mode and
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Vehicles competing for access to the medium

Vehicles that have gained access to the medium

Fig. 1. Example of concurrent transmissions: the 802.11p MAC layer (CSMA/CA) set the rules to access the medium. Only red vehicles are allowed to
transmit frames at the same time

parameters depend on the MAC protocol and the terminal
settings. CCA is performed according to one of these three
methods:

1) CCA Mode 1: Energy above threshold. CCA shall
report a busy medium upon detecting any energy above
the Energy Detection (ED) threshold. In this case, the
channel occupancy is related to the total interference
level.

2) CCA Mode 2: Carrier sense only. CCA shall report
a busy medium only upon the detection of a signal
compliant with its own standard, i.e. same physical layer
(PHY) characteristics, such as modulation or spreading.
Note that depending on threshold values, this signal may
be above or below the ED threshold.

3) CCA Mode 3: Carrier sense with energy above thresh-
old. CCA shall report a busy medium using a logical
combination (e.g. AND or OR) of Detection of a com-
pliant signal AND/OR Energy above the ED threshold.

The CCA mechanism aims to ensure that there is a minimal
distance between simultaneous transmitters. It is performed
at the transmitter, and cannot guarantee in practice a low
interference level at the receiver: a receiver may suffer from
harmful interference even if the medium was detected idle
(by the transmitter). The CCA is strongly linked to the
radio environment and obstacles that may be located between
a transmitter and a node performing the CCA mechanism.
In this paper, the path-loss function used in the numerical
evaluation assumes line of sight transmissions, i.e. does not
model obstacles. Nevertheless, our model could be adapted to
take into account these obstacles through more complex path-
loss functions.

The CCA mechanism limits the number of simultaneous
transmitters in a given area, and thus the number of frames that
can be sent per second. Therefore, there is a direct relationship
between the spatial reuse imposed by the CCA mechanism and
the capacity.

B. Related works

A theoretical bound on the capacity of ad hoc networks was
initially investigated in [6] where the authors prove that, in a
network of n nodes, a capacity of Ω

(
1√

n·logn

)
is feasible.

This pioneering work has been extended in a great number of
studies [7], [8], [9]. In these articles, the capacity is reached
by means of particular transmission scheduling and routing
schemes, with more or less elaborated radio models. The
obtained results is an estimation of the asymptotic capacity,
which is shown O

(
1√
n

)
, or O

(
1
n

)
depending on the radio

models and routing schemes. The route throughput taken into
account spatial reuse has been studied in [10]. A capacity
estimation, specific to CSMA/CA ad hoc networks, has also
been investigated in [11].

All these studies focus on networks where nodes are
distributed on the plane or in a 2-dimensional observation
window. VANETs have very different topologies as the ve-
hicles/nodes are distributed along roads and highways. Radio
range of the nodes (about 700 meters with 802.11p in rural
environment) being much greater than the road width, we can
consider that the topology is distributed on a line rather than in
a 2 dimensional space. Lines, grids or topologies composed
of a set of lines (to model streets in a city) are thus more
appropriate to model VANET topologies.

The capacity of 802.11p wireless link in a VANET has
been evaluated in [12], [13], [14]. They estimate the max-
imum capacity between two vehicles communicating with
each other’s, but it does not give the global capacity of
the network considering sharing and spatial reuse of the
medium. In [15], [16], [17], the authors propose a bound on
VANET capacity. They show that when nodes are at constant
intervals or randomly distributed along a line, the capacity is
O
(
1
n

)
and O

(
1

n·ln(n)

)
in downtown (city) grids. But it is an

asymptotic bound. In [18], the broadcast capacity of a VANET
is estimated. The idea is similar to our paper: an estimation
of the number of simultaneous transmitters is proposed. The
evaluation is only based on numerical evaluation, using integer
programming. In [19], authors proposed a model to compute
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the mean number of simultaneous transmitters in a linear
VANET. An upper and lower bound for the capacity had been
derived. However, interference is not taken into account, and
the distance distribution between concurrent transmitters is not
developed.

III. ASSUMPTIONS

Our proposed models mimic the CCA mode 1, where the
sum of signals from all transmitters is taken into account to
detect the medium idle or busy. With this mode, a node will
be allowed to transmit its frame if the measured interference
is lower than a pre-defined threshold θ. We consider a path-
loss function l(.), which gives the reception power of a signal
as function of the distance from the transmitter. We assume
that l(.), defined in IR+, is positive, continuous, decreasing,
l(0) > θ (θ is the CCA threshold) and limu→+∞ l(u) = 0.
It holds in particular for classical path-loss functions with the
form: l(u) = Pt min(1, c/uα) where Pt is the transmitting
power (with Pt > θ), and c and α are two positive constants.
We shall use this family of path-loss functions in our eval-
uations, but any deterministic path-loss functions verifying
these conditions could be considered instead. Our different
results are linked to these functions through simple equations
presented in Sections IV-C and V.

Also, we assume that interference I(x) at x (x ∈ IR+) is
generated by the two closest transmitters:

I(x) = l(x− Le) + l(Ri− x) (1)

where Le, Ri are the two closest transmitting nodes around x,
the closest one on the left (located at Le) and on the right (lo-
cated at Ri). With the IEEE 802.11p expected performances,
this model is very similar to a model where interference from
all the transmitters is taken into account. Indeed, as there is a
significant distance between two successive transmitting nodes
(due to the CCA mechanism), interference generated by distant
interferers is negligible with regard to the closest ones (with
the maximal transmitting power of 802.11p and in a rural
environment, the second interferer in a given direction will be
at least 1 km away from the first one). Therefore, according
to CCA mode 1, a node at x detects the medium idle and can
transmit a frame, if and only if:

I(x) = l(x− Le) + l(Ri− x) < θ (2)

IV. AN EXTENSION OF THE RÉNYI’S PACKING MODEL

Before presenting our extension of the Rényi’s model, we
present the classical one.

A. Classical Rényi’s packing model

Let assume that a transmission is detected if the distance
from the transmitter is less than a pre-defined distance R. It
means that if there is a transmitter at location x, other nodes
within the segment [x−R, x+R] cannot access the medium.
With this simple assumption, the problem about determining
the maximum number of simultaneous transmitters comes
down to the following question: how many segments with
size 2R can we put in a certain interval [a, b] under the
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Fig. 2. A sample of our model.
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and different value of α and Pt. D is the solution of 2l(D
2
) = θ with

θ = −99dBm.

constraint that the centers of these segments cannot be covered
by another segment? We consider a model in which these
segments will be located randomly in [a, b]. The first segment
is placed uniformly in [a, b]. Then, we place the second
segment uniformly into all points t of [a,b] such that a segment
at t does not cover the center of the previous segments, and
so on. The process terminates when there are no gaps in [a, b]
large enough to host another segment. This model is referred
to as the Rényi’s packing problem [4]. A rigorous analysis [4]
shows that the mean number of segments multiplied by the
segment length (2R) and divided by the interval length (b−a)
tends to a constant γ ≈ 1.4952 when (b − a) → +∞. The
number of simultaneous transmitters can then be estimated as
(b− a) γ

2R for (b− a) large enough.
The Rényi’s model can be applied in the case where only

the closest interferer (but not the sum of signals from Le or
Ri) is taken into account. The detection distance R may be
deduced from the path-loss function, i.e. the distance at which
the signal strength generated by a transmitter is equal to the
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ED threshold (l(R) = θ).

B. Extension of the Rényi’s packing model

Our extension aims to take into account interference in
the selection of the transmitters rather than a deterministic
distance. We consider a highway or a road with length L.
The interval is thus [0, L]. The model gives the maximum
number of transmitters in [0, L] such that the CCA rule given
by Equation (2) is respected.

Around each transmitter there is an inhibition interval where
the interference level (sum of the signal given by Equation (2))
is above θ. These intervals correspond to the hatched rectan-
gles in Figure 2. They are asymmetric: inhibition intervals are
different on the left and right hand sides of a transmitter. We
use a function v(s) to describe their lengths. If s (s > 0)
represents the distance between two consecutive transmitters,
the interference level for a point at distance u from one of
these transmitters will be l(u)+l(s−u). The minimal distance
v(s) from these transmitters that verifies Equation (2) is thus
defined by:

l(v(s)) + l(s− v(s)) = θ (3)

This equation makes sense only if s is sufficiently great
(s > 2 · v(s)). This minimal length is denoted D with D
solution of 2 · l(D2 ) = θ. The function v(.) is thus defined in
[D,+∞].

We can now describe the process to set the transmitter
locations. We assumed that there are two initial transmitters at
locations 0 and L. If L > D, a new transmitter is uniformly
distributed in [v(L), L−v(L)]. Let s be its location. If s > D,
a new point is uniformly distributed in [v(s), s − v(s)], and
if L − s > D a new point is uniformly distributed in
[s+ v(L− s), L− v(L− s)]. Each time a new point is added,
it creates a new interval on its left and its right. If the length
of an interval is less than D we cannot add a new point,
otherwise we add a new point uniformly distributed in this
interval. The process stops when all intervals are smaller than
D. An example of this process is represented in Figure 2:
• Step 0 (initialization): two nodes are located at 0 and L.
• Step 1: a new point is uniformly distributed in [v(L), L−
v(L)], at s in our example. There are two new intervals
where transmitters can be added : [0, s] and [s, L]. In
our example, they are both greater than D. Taking into
account the inhibition intervals, new transmitters can be
distributed in [v(s), s−v(s)] and [s+v(L−s), L−v(L−
s)].

• Step 2: a new point is uniformly distributed in [v(s), s−
v(s)]. It is located at t. Interval on the left and right of
t are smaller than D. Therefore, points cannot be added
in these two intervals.

• Step 3: a new point u is uniformly distributed in [s +
v(L− s), L− v(L− s)].

• Step 4: The interval on the right hand side of u is smaller
than D. But a new point can be added on the left, in the
interval [s + v(u − s), u − v(u − s)]. It is not shown in
the figure. This last point terminates the process.

We denote m(L) the mean number of points in the interval
[0, L] at the end of the process. m(L) does not count the two

initial points at 0 and L. Unfortunately, its computation is,
to our knowledge, intractable. Nevertheless, we can prove its
convergence.

Proposition 1. Let m(L) be the mean number of points in the
interval [0, L] for the process defined above, then:

lim
L→+∞

m(L)

L
= λ (4)

where λ is a positive constant.

The proof is given in Appendix. This proposition proves
that the intensity of this point process converges to a constant
as the size of the interval increases. This constant can be used
to evaluate the mean number of simultaneous transmitters and
the capacity of the VANET. Indeed, m(L) can be evaluated as
λL. Consequently, the mean number of frames sent per second
in the network can be estimated as:

λL

T
(5)

where T is the mean time to transmit a frame. T totals the
time to access to the medium, and the time to transmit the
frame.

C. Estimation of λ and the capacity

According to Equation (5), estimation of the capacity boils
down to the computation of the limit λ. We propose an
estimation of λ that can be deduced directly from the path-
loss function. In Figure 3, we plotted the quantity m(L)D

L
when L increases. It has been obtained by simulations of
the model. Each point is the average of 100 samples and
is shown with a confidence interval at 95%. The considered
path loss function is l(u) = Pt ·min(c, c

uα ), where Pt is the
transmission power, c is the loss reference parameters (equals
to −46.6dBm) and α is the path-loss exponent. In this figure,
we took into account two transmitting powers Pt = 17.02dBm
and Pt = 43dBm corresponding to transmission powers used
in 802.11a and 802.11p technologies, and different path-
loss exponent α modeling different radio environments. We
observe that all curves converge to the same constant, approx-
imately equals to 1.49. This result is not surprising as it holds
for other packing problems in one or two-dimensional spaces
(see [20] or [11] for instance). Also, we performed the same
simulations for other path-loss functions (with exponential
decay for example), and observe a convergence to the same
constant. These results are not shown here because of the
redundancy. This convergence to a universal constant allows
us to estimate the limit λ of Proposition 1 as follows:

lim
L→+∞

m(L)

L
= λ ≈ γ

D
(6)

with γ = 1.49 and D solution of 2l(D2 ) = θ. The final
capacity, expressed in Mbps/km, is then evaluated as:

Capacity(L) =
γLPacket Size

DT
(7)

For a path-loss function with the form l(u) =
Pt min(1, c/uα) with Ptc > θ, 2l(D2 ) = θ leads to
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D = 2
(
2Ptc
θ

) 1
α . The capacity per kilometer (L = 1km) is

then γ
2T

(
θ

2Ptc

) 1
α

with γ = 1.49. An example of computation
of T is given in Section VII.

Even if our model considers variable interval lengths, it
seems that the constant γ fit to the Rényi packing constant
introduced in Section IV-A. An interesting extension of this
work would consist in proving that these packing constants
are effectively the same.

Equation (7) estimates the number of bits transmitted at the
MAC layer under the energy detection mechanism. Therefore,
it is a upper bound of the achievable capacity. The measured
capacity is generally lower due to contention, collisions, and
fading. Also, our estimation holds for a great density of
vehicles, as it assumed that the medium is busy everywhere
(busy according to the CCA mode 1). In practice, sections of
road without potential transmitters will reduce this capacity.
Section VII compares this bound with simulations that take
into account realistic models in terms of data traffic, radio
environments, and traffic of vehicles.

V. A MARKOVIAN POINT PROCESS

Extension of the Rényi packing model gives us a very
simple and precise formula to estimate the capacity of VANET.
However, we cannot acquire any information on the dis-
tribution of distances between the concurrent transmitters.
This quantity is one of the major quantities involved in the
computations of link properties such as SINR, BER and
FER. Therefore, we propose in this section, a new model
based on a Markovian Point Process. The model consists in
a general Markovian point process composed of an ordered
sequence of points (Xn)n≥0 with Xn ∈ IR+ which verifies
two packing constraints. The first constraint is the packing
criterion that sets the repulsion rule between the points. The
second criterion ensures that the space is completely filled,
and that it is impossible to add new points/transmitters.
• Criterion 1: the interference level at each point Xn of

the point process (given by Equation (1)) is less than

the Energy Detection threshold θ. Here, the interference
computation does not take into account the signal from
Xn. Indeed, Xn has detected the medium idle before
transmitting.

• Criterion 2: the interference level at any point of
IR+\{Xn}n≥0 (everywhere except at the transmitter lo-
cations) is greater than θ.

In the following, we define the interval where the random
variables of the Markov chain take their values. It is set
according to these two criteria. Then, we present the algorithm
used to build the point process, and we give the particular
transition density function used in this paper and the main
results (in Proposition 2).

A. State space of the Markov chain

The chain is denoted (Xn)n∈IN with Xn−1 < Xn. It rep-
resents the simultaneous transmitters of a CSMA/CA network
and consists in a sequence of random points distributed on the
line. According to Criterion 1, interference at each point Xn

must be less than the CCA threshold θ:

I(Xn) < θ ∀n ≥ 0

But, the building of this point process does not mimic the
Rényi model where a point is added according to the distance
from the points on the left and on the right. Indeed, the
points are added in an increasing way (Xn before Xn+1 with
Xn < Xn+1). Xn is thus set without the knowledge of the
next transmitter location Xn+1, and the interference level at
Xn is computed once the point Xn+1 is set. Therefore, when
we add a new point Xn+1, we need to take into account the
interference level at the previous one (Xn), i.e. Xn+1 must
not increase interference at Xn above θ:

l(|Xn −Xn−1|) + l(|Xn+1 −Xn|) < θ (8)

The minimal distance between Xn and Xn+1 is denoted
S(|Xn − Xn−1|). The function S(.) defines the minimal
distance to the next transmitter. It is formally defined as the
solution of

l(u) + l(S(u)) = θ (9)

where u corresponds to the distance between the two previous
points/transmitters. A point Xn is thus distributed in [Xn−1 +
S(Xn−2 −Xn−1),+∞].

The second criterion allows us to bound this interval.
According to Criterion 2, we shall distribute the points in such
a way that it is not possible to add more points which could
detect the medium idle. Consequently, the distance between
transmitters must be bound by a maximal distance in order
to prevent the presence of intermediate transmitters. Let D be
this distance, it is solution of

2 · l
(
D

2

)
= θ (10)

D is the same quantity as the one defined in the packing
model. Thus, each point Xn (n > 1) belongs to the interval
[Xn−1 + S(Xn−1 − Xn−2), Xn−1 + D]. Distances between
the successive transmitters are denoted ξi = Xi − Xi−1. ξn
(n > 1) is thus distributed in [S(ξn−1), D].
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B. Building the point process

The point process is built as follows. The first two trans-
mitters are located at X0 = 0 and at X1 with X1 ≤ D almost
surely. Assumptions about the distribution of X1 are given in
Proposition 2.

The other points are built recursively. The location of a
transmitter Xn (n > 1) is distributed in [Xn−1 + S(Xn−1 −
Xn−2), Xn−1+D]. For convenience, we consider the sequence
ξn = Xn − Xn−1 rather than Xn. The sequence (ξn)n≥0
is thus a homogeneous Markov chain which takes its values
in the continuous state space [S(D), D]. It is possible to
consider any distribution on this interval, each one leading
to different density of transmitters. The model can thus be
adapted with regard to the system. For example, if we choose
ξn as deterministic with ξn = S(D) (respectively ξn = D), we
obtain the maximum (respectively minimum) density of points
verifying the two packing criteria. In Figure 4, we present an
example of this point process and the different notations.

As we do not know a priori the transition density of the
distance between the transmitters for our particular problem,
we have considered different distributions. We have chosen
to show only the most accurate distribution. It has been
determined by comparison with NS-3 simulations (shown in
the next sections). This distribution is the linear distribution
in [S(ξn−1), D]. By linear distribution we mean an affine
function, positive in [S(ξn−1), D], null at D, and such that
its integral on [S(ξn−1), D] is 1. The pdf fξn|ξn−1

(.) of ξn
given ξn−1 is then:

fξn|ξn−1=s(u)

=
( −2

(D − S(s))2
u+

2D

(D − S(s))2

)
1u∈[S(s),D] (11)

where 1u∈[S(s),D] is the indicator function, equals to 1 if
u ∈ [S(s), D] and 0 otherwise. The stationary distribution of
this Markov chain is given in the following proposition:

Proposition 2. The process (ξn)n≥0 defined in this Section
is a Markov chain. The stationary distribution of ξn for the
particular density transition function given by Equation (11)
is π(s) with:

π(s) = a · (D − s)(D − S(s))21s∈[S(D),D] (12)

where a is a normalizing factor. The chain (ξn)n>0 con-
verges in total variation to the distribution π(s) for all initial
distribution of ξ1 in [S(D), D]. If ξ1 follows the stationary
distribution π(.) then ξn follows the distribution π(.) for all
n with n > 0.

The proof of this proposition is given in the appendix.
This function π(.) represents the distribution of the distances
between concurrent transmitters. According to numerical eval-
uations, the intensity of transmitters given by the packing
model described in the previous section is lightly greater
than the intensity of this process (given by the inverse of
the mean distance). The previous bound is more precise as
the model mimics quite accurately the algorithm used to
access the medium. But, for this Markov model, we need to

Fig. 5. Satory’s speed track.

Fig. 6. Renault Clio III equipped vehicles (TIC and TAC) on the track.

set a transition function that is a priori unknown, and that
introduces a light bias. However, this second model allows us
to estimate the distance distribution between transmitters that
is not tractable with the packing model.

VI. EXPERIMENTATIONS

Our theoretical models aim to provide precise tools to
estimate VANET capacity. Unfortunately, estimation of the

Fig. 7. TIC’s embedded equipments.
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(c) 30 dBm transmission power.

Fig. 9. Path-loss function.
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Odometer

RS232

Fig. 8. Inside vehicle devices modules.

Transmission power Exponent Loss reference
24 dBm 1.3519 -86.5457 dBm
27 dBm 1.6964 -80.9766 dBm
30 dBm 1.9596 -75.1781 dBm

TABLE I
ESTIMATED PARAMETERS.
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Fig. 10. Xg fading histogram and fitting curve (Tx = 30 dBm).

Transmission Power 24 dBm 27 dBm 30 dBm
Mean 0.06 -0.13 0.26

Standard deviation 5.2 5.07 5.24

TABLE II
NORMAL FITTING CURVE VALUES.
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real spatial capacity was impossible as it requires a lot of
vehicles scattered on roads of several kilometers. Conse-
quently, we use a realistic simulator (presented in the next
section) fed with a radio model whose parameters are obtained
from experimentations. Such experimentations have already
been perfomed [21], [22], but we wanted to assess path-
loss functions and communication characteristics for recent
802.11p products.

We made experimentations on a track where vehicles were
in the line-of-sight of each other’s. Therefore, we considered a
radio model that mainly depends on a path-loss function. Ex-
perimentations were thus used to estimate a realistic path-loss
function, including distribution and parameters of a random
variable modeling fading.

Experimentations took place on the Satory’s speed track
dedicated for testing vehicles, isolated from regular traffic. The
speed track includes a 1 kilometer way of direct line of sight
(see Figure 5). Two Renault Clio III vehicles (TIC : “Transport
Intelligent Coopératif ” and TAC : “Télécommunication pour
l’Assistance à la Conduite”) had been used for the experimen-
tations. Figure 8 presents the block diagram of the different
modules installed in the two vehicles. There is an On Board
Unit (OBU) that collects and processes all data from the
sensors (gyro, accelerometer, odometer, etc). IEEE 802.11p
wireless interfaces which use Atheros 5413 Wi-Fi chipset were
installed in an embedded PC (see the white box with the
antenna on Figure 7). This computer operates under the Linux
Ubuntu operating system. We installed the open-source ath5k
Wi-Fi driver [23], which was patched in 2010 for the Grand
Cooperative Driving Challenge [24] in order to enable 802.11p
channels. Some modifications on the transmission power and
frequencies have been made to adapt the compatibility of Eu-
ropean Telecommunications Standards Institute [25]. Indeed,
these devices were manufactured for United States market
under Federal Communications Commission [26] Standards.
An antenna with the gain of 3 dBi was connected to the
embedded PC. An Ethernet interface was used to connect this
embedded PC to the OBU (see Figure 8). The first vehicle
(TIC) broadcasted the packets to the TAC vehicle that was
set up as a server. For each received packet, it measured the
reception power.

The main difficulty in this experimentation was to associate
the packets with the distances. In other words, the TAC vehicle
must know, for each packet, the distance from itself to the
TIC vehicle. The location of a vehicle was computed thanks
to a data fusion process (an Extended Kalman Filter using the
embedded sensors including the RTK GPS [27]) allowing the
OBU to achieve a centimeter precision on the distance. The
location of the client (TIC) was time stamped and inserted in
the packets sent to the server (TAC). The clocks of the OBU
and the embedded PC were synchronized via the Network
Transfer Protocol, according to the time of the GPS receiving
module (see Figure 8). Consequently, we could associate the
positioning informations and the reception powers.

We varied the distance between vehicles from 0 to 300
meters with a step of 10 meters. We collected at least 30
samples for each distance. We performed our experimentations
with 3 different transmission powers: 24, 27 and 30 dBm.

Since we considered a line-of-sight propagation model, we
extrapolate the measured path-loss function with the classical
Log Distance Path-loss model. The formula of this model is
as follows:

Rx = Tx + LossRef − 10αlog(d) +Xg (13)

where Rx is the reception power, Tx is the transmission power,
LossRef is the loss reference, α is the path-loss exponent, d
is the distance between transmitter and receiver and Xg is a
random variable which models fading.

The elements that we need to estimate are LossRef , the
path loss exponent α and the distribution of Xg . First, we
assumed that Xg = 0. It allowed us to estimate LossRef
and α with a Minimum Mean Square Error (MMSE) method.
Results are presented in Figure 9. It shows the mean reception
power from the experimentations (with a 95% confidence
interval) and the estimated path-loss function. The extrapolated
parameters are summarized in Table I. Then, fading Xg was
interpreted as the difference between the estimated path-loss
function and the measured reception power (for each sample).
The empirical distribution of Xg is shown in Figure 10 for a
transmission power of 30 dBm. The best fit corresponds to a
Normal distribution where parameters are given in Table II.

VII. SIMULATIONS

In order to estimate the accuracy of our approach, we
present a comparison between simulations performed with the
Network Simulator NS-3 [5] and our theoretical models. This
section is composed of three parts. It begins by describing the
different components of our simulators and their parameters.
Then, the simulated capacity is compared to the one obtained
with our extension of the Rényi model presented in Section IV.
The last part is dedicated to the comparison of the transmitter
inter-distances between simulations and the Markov model
developed in Section V.

A. Simulators and parameters

Nodes are equipped with IEEE 802.11p interfaces. Each
node is a CBR (Constant Bit Rate) source. This CBR rate
is close to the 802.11p rate (6Mbps) in order to saturate the
network. The capacity is computed as the number of bits that is
properly received by the closest neighbor from the sender, and
upstream with regard to the traffic. There are two simulation
scenarios:
• No fading case: This scenario corresponds to NS-3

default models and parameters of the IEEE 802.11p
technology. We neglected fading effect in this case. This
radio model is equivalent to the one considered in our
models. The other parameters are given in Table III.

• Scenario from experimentations: This scenario uses the
radio model set from the experimentations (presented in
Section VI). Fading is thus taken into account. It leads to
a smaller radio range compared to the previous scenario.
All parameters are given in Table IV.

We simulated a 20 km highway. To avoid edge effects, we
did not take into account data from the first and the last 2.5 km
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Theoretical and NS-3 Parameters Numerical Values Theoretical and NS-3 Parameters Numerical Values

IEEE 802.11std 802.11p - CCH channel Path-loss function l(d) = Pt ·min
(
1, 10

−4.5667

d3.0

)
CCA mode CCA mode 1 ED Threshold (θ) −99 dBm
Emission power Pt 43 dBm Number of samples per point 100
Length of the packet 400 bytes Duration of the simulation 4 sec
Road length 20 km

TABLE III
SIMULATION PARAMETERS: NO FADING CASE.

Theoretical and NS-3 Parameters Numerical Values Theoretical and NS-3 Parameters Numerical Values

IEEE 802.11std 802.11p - CCH channel Path-loss function l(d) = Pt ·min
(
1, 10

−7.517

d1.9596

)
CCA mode CCA mode 1 ED Threshold (θ) −99 dBm
Emission power Pt 30 dBm Number of samples per point 100
Length of the packet 400 bytes Duration of the simulation 4 sec
Road length 20 km

TABLE IV
SIMULATION PARAMETERS: SCENARIO FROM EXPERIMENTATIONS (WITH FADING).
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(b) Traffic simulator.

Fig. 11. No fading case: capacity.
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Fig. 12. Scenario from experimentations: capacity.
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(b) Traffic simulator.

Fig. 13. No fading case: distribution of the distances between concurrent transmitters.
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(b) Traffic simulator.

Fig. 14. Scenario from experimentations: distribution of the distances between concurrent transmitters.

of the highway for both scenarios. Each point in the different
figures are computed as the mean of 100 simulations and are
presented with a confidence interval at 95%.

We considered two kinds of traffic of vehicles. First, we
assumed that the distance between the vehicles is constant.
Then, we used our own traffic simulator to inject realistic
vehicle locations into NS-3. Our micro-simulator emulates
drivers’ behavior on a highway (drivers are limited to ac-
celerating, braking and changing lanes). A desired speed is
associated with each vehicle. It corresponds to the speed that
the driver would reach if he was alone in his lane. If the
driver is alone (the downstream vehicle is sufficiently far), he
adapts his acceleration to reach his desired speed (free flow
regime). If he is not alone, he adapts his acceleration to the
vehicles around (car following regime). He can also change
lanes if the conditions of another lane seem better. All these

decisions are functions of traffic condition (speed and distance)
and random variables used to introduce a different behavior
for each vehicle. This kind of simulation is called micro
simulation [28], and the model we used is presented in detail
in [29]. The model has been tuned and validated with regard
to real data collected on a highway. For these simulations,
we simulated a road/highway with 2 lanes. The desired speed
of the vehicles follows a Normal distribution with mean 120
km/h and standard deviation σ = 10. The distance shown on
the x-axis in the figures (traffic cases) corresponds to the mean
distance between two successive vehicles. It varies from 800
to 10 meters.

B. Results on capacity

The theoretical capacity that is shown in the figures is com-
puted from equation (7). The upper bound is 1.64 Mbps/km
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for the first scenario, and 4.3 Mbps/km for the scenario from
experimentations. In this equation, the mean time to transmit
a frame T , is computed as the sum of AIFS (Arbitration
Inter-Frame Space) equals to 71µs, the backoff time equals to
n× time slot (we choose n = 1.5 as this number is drawn in
[0, 3] for the highest priority) leading to 19.5µs, the preamble
duration and the time to transmit the frame header (75µs), and
the time to transmit the payload (533µs). The final value of
T is then 698µs. This value is then used in Equation (7) to
estimate the theoretical capacity.

1) No fading case: We plotted the capacity for this first
scenario in Figure 11. The two figures correspond to the
two kind of traffic: constant inter-distances and trajectories
generated by the traffic simulator. We plotted two curves
that correspond to the number of bits that has been sent
(capacity - sent bits), and received by the neighbor of the
sender (capacity - received bits). The theoretical bound, which
equals approximately to 1.6 Mbps/km in this case, is very
accurate and is reached even for very low density of traffic
(for inter-distances less or equal to 100 meters).When the
vehicles density increases, the number of sent bits becomes
significantly greater than our bound. Indeed, the great number
of vehicles willing to access the medium causes collisions, i.e.
they select the same backoff and transmit at the same time.
Consequently, a certain number of transmissions do not respect
CCA rules leading to a greater number of transmitters and sent
bits compared to our model. Nevertheless, it appears that most
of these transmissions fail, leading to a number of received bits
that are very close to the theoretical capacity. We can observe
that for one point, the number of received bits exceeds the
theoretical capacity. It is caused by transmissions that succeed
even if they do not respect the CCA rule.

2) Scenario from experimentations: In Figure 12, we show
the results on capacity for the scenario using the radio
model from experimentations. The capacity estimated from
simulations reaches approximately 4 Mbps/km whereas the
theoretical bound is 4.3 Mbps/km. We plotted more points
when the vehicles density is high. It allows us to observe that
capacity stays constant (reaches its limit) when the mean inter-
distance between vehicles is less than 25 meters. The bound
is reached for smaller inter-distances (greater vehicles density)
with regard to the previous scenario because the CCA distance
(distance at which a transmission is detected) is smaller. The
capacity is greater for the same reason.

Simulations show that our upper theoretical bound is per-
tinent as all simulations leads to similar but lower capacity.
The theoretical capacity is achievable for traffic density greater
than approximately 300 meters for the case without fading, and
30 meters for the other one. The difference is due to the radio
range and CCA detection distance that is lower in the second
scenario, leading to a better spatial reuse. Consequently, the
maximum achievable capacity requires a denser distribution of
vehicles. But, a density of 33 vehicles/km ( 1

0.03 veh/km) does
not correspond in practice to a dense traffic scenario in a multi-
lane highway or road. This bound is accurate, with less than
5% of errors for the scenario without fading, and less than 10%
with the radio model from experimentations. Therefore, the
packing model offers a good approximation of the maximum

feasible capacity. This bound is thus almost reachable for the
considered scenarios, but distances between transmitters and
the considered receivers were favorable. For greater distances,
congestion and fading may decrease the observed throughput
with regard to this bound. The impacts of fading, congestion,
and vehicular traffic are discussed in details below, where we
compare the theoretical distance between transmitters with the
empirical one.

C. Distribution of distances

In Figures 13 and 14, we plotted the distance distributions
obtained with NS-3 and π(s) given in Proposition 2. The
abscissa is the interval [S(D), D] (meters) given in Section V.
We collected distances between transmitters from 100 simula-
tions. For each simulation, we collected the distances between
the transmitters and we plotted the corresponding empirical
probability density function. We considered 3 cases: the case
respecting CCA rules, saturation, and all samples. In the curve
“respecting CCA rules”, we neglected the distances which
are lower than the theoretical minimum distance between two
transmitters S(D). Obviously, such a case corresponds to a
collision, where two nodes competing for the medium access
to the channel at the same time. For the saturation case, we
did not take into account distances greater than D (we neglect
region where the radio channel is idle). For the last case,
we kept all the samples. The shapes of all distributions fit
well with the Markovian model distribution π(s), especially
in case of saturation. Nevertheless, we cannot deny that we
observe a difference. Indeed, it is very difficult to reach the
absolute saturation condition where the medium is busy at
every location, all the time. Sometimes, a vehicle satisfied
CCA condition but it was on back-off stage, and does not
transmit data. Therefore, there are regions where the medium
is idle. Moreover, we observed that in case of realistic traffic,
when the density becomes extremely dense (200 veh/km),
local traffic jams appear. It leads to a very dense highway
section (the jam), followed by a very sparse section. This
strong inhomogeneity, generated by realistic traffic, explains
the gap with our model. However, in the case of constant
distances, the theoretical curves present only a small difference
with simulations. It empirically proves that the Markovian
model corresponds to a case where the CCA rule is respected
by all nodes (no collisions), and where the medium is spatially
busy. Even if these conditions are not feasible in practice, our
Markovian model still offers accurate approximation for the
distance distribution.

VIII. CONCLUSION

This study aims to propose realistic models that could
be used as tools for dimensioning and parameterizing of
VANET applications. The first model was used to estimate the
VANET capacity, and the second deals with transmitter inter-
distances, i.e. channel spatial reuse. We performed simulations
as realistic as possible, combining the network simulator NS-
3, a radio model obtained from real experimentations, and a
traffic simulator. Comparisons between the theoretical capacity
and the simulations have shown that our bound is achievable.
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It empirically proves that these models capture the underlying
mechanism limiting the capacity and setting the spatial reuse
of the VANET. Our models are thus sufficiently accurate to
offer a parameterizing tool for applications.

This work may be improved in different ways. The distri-
bution of the distance between two transmitters can be used to
evaluate Interference, Bit or Frame Error Rates. Packing mod-
els can be extended in order to take into account multi-path and
fading properties of wireless links. Another improvement of
our model should be to consider obstacles or more generally
OLOS (Obstructed Line of Sight) between transmitters and
nodes performing CCA. It may be done through the use of
different path-loss functions, one will model LoS (Line of
Sight) meaning that there is no intermediate obstacles/vehicles,
and another one will model OLOS (Obstructed Line of Sight).
Also, models could be improved to take into account sub-
mechanisms of CSMA/CA (backoff, collisions, etc.). This
latter proposition will require developing much more complex
models than the ones presented in this paper.
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APPENDIX A. PROOF OF PROPOSITION 1.

We show that lim m(L)
L → constant when L→ +∞. m(L)

is the mean number of points in the interval [0, L], but it does
not count the two points at 0 and L. First, we prove that m(L)
is a super-additive function, i.e. m(L) ≥ m(s)+m(L−s) for
all s ∈ (0, L). If L < D then m(L) = m(s) = m(L − s) =
0 and the assertion is true. To prove the super-additivity for
L > D, it suffices to note that, for s ∈ [v(L), L − v(L)],
m(s) and m(L − s) originally defined as the mean number
of points in [0, s] and [0, L − s] are also equal to the mean
number of points in the sets [v(s), s − v(s)] and [s + v(L −
s), L − v(L − s)]. Obviously, the mean number of points in
[v(L), L− v(L)] is greater than the sum of the points in two
of its sub-intervals. Finally, if s ∈ [0, v(L)] (respectively ∈
[L−v(L), L]), m(s) (resp. m(L−s)) is nil and the remaining
interval [s+ v(L− s), L− v(L− s)] (resp. [v(s), s− v(s)]) is
a subset of [v(L), L− v(L)].
m(L) being super-additive and according to the Fekete

Lemma, m(L)
L converges to a finite or an infinite limit when

L → +∞. To prove that the limit is finite, we need to show
that ∃A = constant ≥ 0 such that m(L) ≤ AL. By definition,
the minimal distance between two successive points is D

2 . The
mean number of points in [0, L] is thus less than L

D
2

. m(L)
L is

thus bound by a positive constant. Therefore, the limit is finite.
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APPENDIX B. PROOF OF PROPOSITION 2.

First, we prove that if the initial distribution of the Markov
chain (the distribution of ξ1) is π, ξn follows the distribution
π for all n > 0. It suffices to show that π is the stationary
distribution for this chain. We need to prove that

π(s) =

∫ D

S(D)

fξn|ξn−1=y(s)π(y)dy (14)

with π(s) = a (D − S(s))
2

(D − s) and fξn|ξn−1=y(s) given
by Equation (11).

We get, ∫ D

S(D)
fξn|ξn−1=y

(s)π(y)dy

=

∫ D

S(D)

(
−2

(D − S(y))2
s+

2D

(D − S(y))2

)
(15)

× 1s∈[S(y),D]a(D − y)(D − S(y))2dy (16)

= 2a(D − s)

∫ D

S−1(s)
(D − y)dy (17)

= a (D − s) (D − S−1(s))2 (18)

where S−1(.) is the inverse function of S(.). This function
exists since due to the properties of the function l(.), S(u) is
bijective, differentiable and strictly decreasing in [S(D), D].
To conclude, note that S−1(x) = S(x). It can be proved by
considering the definition of S(.) given by Equation (9). We
get,

a (D − s) (D − S−1(s))2

= a (D − s) (D − S(s))2 = π(s) (19)

Also, we prove that ξn converges in total variation (it
implies convergence in distribution) to π for any initial
distribution of ξ1 in (S(D), D]. We apply the Theorem 1
in [30] to prove this convergence. Since we have proved that
π was the stationary distribution, it suffices to prove that the
kernel P of this Markov chain is strongly π−irreducible, i.e.
∀x ∈ (S(D), D] and A ⊂ [S(D), D] with π(A) > 0, there
is a positive integer nxA such that Pn(x,A) > 0 ∀n ≥ nxA.
In our case, π(A) > 0 with A ⊂ [S(D), D] is equivalent to
ν(A) > 0 where ν(.) is the Lebesgue measure in IR+. The
kernel P describes the transition probabilities, in our case it
is formally defined as:

P (x,A) =

∫
A

fξ2|ξ1=x(y)dy (20)

with A ⊂ [S(D), D]. Pn(., .) is the distribution of ξn (n > 1)
given ξ1. It may be defined recursively:

Pn(x,A) =

∫ D

S(D)

P (x, dy)Pn−1(y,A) (21)

First, note that if Pm(x,A) > 0 with m > 0, Pn(x,A) > 0
∀n ≥ m. It can be easily proved by recurrence: since
Pm(x,A) > 0 ∀y ∈ [S(D), D] and P (x, dy) = fξ2|ξ1=x(y)dy
with fξ2|ξ1=x(y) > 0 ∀y ∈ [S(x), D], Pm+1(x,A) expressed
as

Pm+1(x,A) =

∫ D

S(D)

P (x, dy)Pm(y,A) (22)

will be positive if ν([S(x), D]) > 0, in other words if x >
S(D). We prove now that P 2(x,A) for all x ∈ [S(x), D] and
A ⊂ [S(x), D] with ν(A) > 0. nxA can thus be chosen equal
to 2. Let a = min{u, u ∈ A},

P 2(x,A) =

∫ D

S(D)
P (y,A)fξ2|ξ1=x(y)dy (23)

≥
∫ D

S(min(x,a))
P (y,A)fξ2|ξ1=x(y)dy (24)

> 0

Indeed, P (y,A) > 0 and fξ2|ξ1=x(y) > 0 for all y
in [S(min(x, a)), D]. Equation (24) is thus positive when
ν([S(min(x, a)), D]) > 0, i.e. when x > S(D). This proves
that the Markov chain is strongly π−irreducible, and thus µPn

converges in total variation to π when n→ +∞ for any initial
distribution µ in (S(D), D].


