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Abstract—With Software-Defined Networking (SDN), com-
puter networks will gain a better control and management on
their physical resources and on flows requiring a specific type
of QoS. To fulfil these objectives, networks must be able to
characterize the end-to-end performance of flows, which are
usually unknown and not directly measurable. Instead, networks
have typically at their disposal only local measurements, collected
at each node.

In this paper, we propose a new method to evaluate the
variance of the end-to-end delay based only on measurements
collected on nodes. The core of our solution is to link samples
of waiting times at different nodes in order to approximate the
corresponding covariance terms, needed to refine the approxi-
mate value of the sought variance. We evaluate the accuracy of
our solution using two different scenarios. The obtained results
show that the method is generally good, with a relative error on
the estimated standard deviation of the end-to-end delay usually
close to 5%, though it may exceed 10% when the network is
facing high levels of load and experiencing packet losses.

I. INTRODUCTION

In recent years, Software-Defined Networking (SDN) has
emerged as a promising paradigm for computer networks. In
SDN, the network comprise switches and controllers. SDN
switches are mostly dedicated to the forwarding of packets,
and to statistic computation on the conveyed traffic. On
the other hand, one or several controllers are in charge of
managing the network. This includes tasks such as route
computations as well as more elaborated tasks (e.g., load
sharing, resource allocation, QoS provisioning, admission con-
trol). Therefore, within the SDN paradigm, the control plane
is centralized, and all decisions are taken by the controllers.
This approach starkly differs from the classical distributed
approach of the Internet. SDN networks are expected to be
more flexible, manageable, and prone to efficient optimization
policies than their classical IP counterparts. This new techno-
logical framework also offers the opportunity to implement
services, typically QoS, using a global knowledge of the
network performance.

Thus, SDN controllers will be able to make their decisions
(e.g., routing, resource allocation, admission control) based
on end-to-end performances of flows. This ability appears as
a huge potential asset for guaranteeing an end-to-end quality
of service to certain flows. However, end-to-end performance

measurements are typically hard to collect. A crucial question
in this context is then: is it possible to infer end-to-end
performance based only on local measurements collected on
the SDN switches? In this paper, we tackle this issue for the
end-to-end delay. Although each SDN switch can measure the
delays spent by packets kept waiting before transmission, the
end-to-end delays of packets cannot be directly derived from
these local measurements. Indeed, correlations occur between
these local delays, and the SDN controllers must handle them
properly to obtain relevant indicators of the performance:
variance, or distribution of the end-to-end delay. We propose
a method to estimate the variance of the end-to-end delay
experienced by packets within SDN networks.

This paper is organized as follows. In the next section,
we present related work and the motivation of this work.
In section III, we present the considered scenario, and the
notation. We also decompose the different terms involved in
the variance of the end-to-end delay. Most of these terms are
measurable or computable locally by the SDN switches. We
show that the correlation mainly lies in the successive waiting
times (time spent by a packet in a buffer). Section IV describes
our proposed method to evaluate this correlation. Numerical
results are shown in section V. Section VI concludes this
paper.

II. PROBLEM STATEMENT AND RELATED WORK

In this paper, we focus our efforts on the one-way end-to-
end delay of packets. Note that this quantity differs from the
round-trip delay measurement, also know as RTT [1], [2]. Note
that the former is not simply half of the latter because network
paths are known to be asymmetric [3]. Also, depending on
the application or type of traffic (e.g. FTP or VoIP/Video), the
relevancy of each type of delays differs.

Besides, measurement schemes may either be intrusive [4]
or non-intrusive [5]. Intrusive schemes rely on probe packets
to assess the latency between two arbitrary nodes of the
network. Because they operate without any knowledge on
the network (high level of privacy ensured), many intrusive
schemes were proposed [6]–[10]. Despite considerable efforts,
intrusive measurement schemes still suffer from a somewhat
lack of understanding (e.g. effect of probe packet size and
rate), and furthermore, the probe traffic may itself cause buffer978–1–5090–0284–9/16/$31.00 c© 2016 IEEE



overflows thereby representing a bias in the outcome [11]–
[13].

Note that the vast majority, if not all, of existing measure-
ment schemes (intrusive and non-intrusive altogether) heavily
relies on clock synchronization between the nodes [14]–[16].
This can be viewed as a major drawback since this typically
requires to equip nodes with a highly-specialized and costly
GPS device.

Instead, we propose to infer the empirical distribution of
the one-way end-to-end delay of packets, and a fortiori its
two first moments, without any need of clock synchronization.
The proposed method belongs to non-intrusive measurement
schemes. It only resorts to measurements that can be collected
independently by each node (e.g. packet sizes, inter-arrival
times, source and destination nodes). In a previous work [17],
we introduced a method to approximate the variance of the
end-to-end delay in the case of a single flow with no competing
traffic. Although this work represented an important milestone,
we had to significantly revise our approach to deal with the
case of multiple flows. We present the corresponding extension
in this paper.

III. SCENARIOS, NOTATIONS AND VARIANCE
DECOMPOSITION

A. Notation

Without loss of generality, we study only the end-to-end
delay of a given flow. Let f1 denote that flow. We refer
to this flow as the primary flow, and to its path along the
SDN network as the primary path. The random variable Pf1

describes the packet size of the primary flow f1.
We label the nodes of the primary path from 1 to N .

Links connecting two successive nodes k and k + 1 are
characterized by their transmission capacity Ck,k+1 (bps), and
their propagation delay Rk,k+1 (msec). Each node maintains
a built-in buffer which is ruled by a First-Come First-Served
discipline.

In addition to the primary flow, other flows may enter and
leave the path at intermediate nodes of the primary path. We
denote by fk,l the flow entering the primary path at node k, and
leaving it at node l after hopping through l−k along the path.
Note that if a flow leaves the primary path, but then returns on
a subsequent node, we will consider it as two different flows.
Figure 1 illustrates such an example of a primary path of 4
nodes with a primary flow f1 that is competing with one flow
that leaves and re-enters into the primary path. In our model,
this flow is split into two flows.

B. Assumptions

Throughout our work, we assume that nodes can measure
for each packet they process:
• the size,
• the departure time (time at which a packet leaves the node

based on a non-synchronized local clock),
• the destination address,
• the source address,

• the waiting time (time spent in the buffer waiting for
transmission).

Thanks to the combination of the source and destination
addresses, nodes are able to distinguish the different flows.
Finally, we assume that each node k knows the propagation
delay and the capacity of subsequent links on the primary path,
i.e., Rl,l+1 and Cl,l+1 for l ≥ k.

C. End-to-end delay decomposition

The time spent by any packet of a given flow f to go through
a node k can de decomposed as a sum of random variables as
follows:

(i) the processing delay, which is the necessary time to
handle the packet header and to commute the packet
to the proper network interface of the node - it is
considered as negligible (it is also close to constant and
thus its variance is null);

(ii) the transmission delay Sfk that corresponds to the time
to transmit physically the packet on the link - it depends
on the packet size and the link capacity;

(iii) the waiting time Wf
k that amounts to the time spent by

the packet kept in the buffer before its transmission;
(iv) the propagation delay Rk,k+1 which is the time to

propagate one bit from node k to node k + 1 - it is
supposed constant and its variance is consequently null.

It follows that the local delay for a packet of flow f1 at node
k, i.e. the time between its arrival at node k and its arrival at
the next node k + 1, can be expressed as:

Df1
k =

(
Wf1

k + Sf1k +Rk

)
. (1)

Note that this local delay, Df1
k , can be measured at node

k. Therefore, we can formulate the end-to-end delay of the
primary flow Df1 as:

Df1 =

N−1∑
k=1

(
Wf1

k + Sf1k +Rk

)
. (2)

From (2), the mean of the end-to-end delay can be straight-
forwardly derived. It suffices that each node along the path
sends an estimate of the mean local delay Df1

k to the SDN
controller. Then, the SDN controller simply computes the sum.
However, computing the variance requires a more complex
algorithm as the correlations between the local delays have to
be taken into account. Using the properties of the variance on
(2), and noting that Rk,k+1 is a constant, we obtain:

V[Df1 ] = V

[
N−1∑
k=1

Wf1
k

]
+ V

[
N−1∑
k=1

Sf1k

]
+ 2×

∑
1≤k<l≤N−1

Cov(Wf1
k ,Sf1l ). (3)

Sf1k is a linear function of Pf1 , namely Sf1k = Pf1

Ck,k+1
. It

follows that V
[∑N−1

k=1 S
f1
k

]
can be easily computed given the

packet size distribution. Typically, this computation can be
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Figure 1: A specific scenario where one flow leaves and re-enters into the primary path. In the realistic scenario, flows f1,2

leaves at node 2 and re-enters at node 3. In the modeled scenario, flows f1,2 is split into 2 flows f1,2 and f3,4.

carried out on the first node of the primary path. For each
incoming packet, the node computes the transmission time
over each subsequent link of the primary path, and sum them
up to obtain a sample of

∑N−1
k=1 S

f1
k . The empirical variance

is then obtained from this set of samples. As for the term
Cov(Wf1

k ,Sf1l ), it can be computed in an analogous way.
Indeed, each node k measures the waiting time Wf1

k , and
then compute Sf1l based on the actual packet size and the
link capacity Cl,l+1. By doing so, we obtain an estimation of
the empirical covariance term in (3). Therefore, only the first
term in (3) is left unknown.

We expand this variance term of the waiting times as
follows:

V

[
N−1∑
k=1

Wf1
k

]
=

N−1∑
k=1

V
[
Wf1

k

]
+ 2×

∑
1≤k<l≤N−1

Cov
(
Wf1

k ,Wf1
l

)
. (4)

Note that in (4), the sum of V
[
Wf1

k

]
can be estimated

locally at each node. Thus, using (3) and (4), our issue
of estimating the variance of the end-to-end delay boils
down to evaluating the correlation between the waiting times:
Cov(Wf1

k ,Wf1
l ). We propose a technique to evaluate this

quantity in the next section.

IV. ESTIMATING CORRELATIONS BETWEEN THE
SUCCESSIVE WAITING TIMES

Intuitively, the correlation between waiting times of succes-
sive nodes should be more important than between nodes that
are distant of several hops. Consequently, we evaluate only
Cov(Wf1

k ,Wf1
k+1) for 1 ≤ k ≤ N − 1 and neglect the other

terms. Simulation results will show that this assumption does
not introduce significant errors.

The rationale of the proposed method is to allow the
SDN controller to link samples of the waiting times on the
two nodes k and k + 1 to estimate their covariances. This
link is made through a recurrent function that can be com-
puted/implemented on both nodes k and k + 1. This function
infers the waiting time at node k + 1 from local measures at
node k. Nodes k and k + 1 computes conditional expectation
of their local waiting times according to this function. The
controller is then able to map the conditional expectations

according to the value of the recurrent function. To help the
reader to understand which quantity is measured and which
one is inferred, all quantities/samples that are inferred have a
hat (ŵ for instance), and the ones that are measured by the
nodes do not have it.

Our method is based on the following conditional expecta-
tion of E[Wf1

k W
f1
k+1]:

E
[
Wf1

k W
f1
k+1

]
= E

[
E
[
Wf1

k

∣∣∣Wf1
k+1

]
Wf1

k+1

]
. (5)

To obtain an estimation of Equation 5 we propose the
following approach. It is possible for a node to infer the
waiting time at the next node. Indeed, it can measure the
departure time of the leaving packets. These times correspond
to the arrival time at the next node. Let us denote pm the
packet size of the m-th packet (m ≥ 1). We also consider the
variable δ̂mk,k+1 that describes the inter-arrival time between
packets m−1 and m at node k+1 inferred at node k. smk is the
transmission time of packet m at node k (it is locally measured
or directly deduced from the packet length). Assuming that the
server discipline is FIFO (First In-First Out), the waiting time
and inter-arrival time at the next queue can be inferred through
the following recurrent function:

{
ŵm

k,k+1 = max{0, ŵm−1
k,k+1 + sm−1

k − δ̂m−1
k,k+1}

δ̂mk,k+1 = smk + max{0, δ̂m−1
k,k+1 − ŵm−1

k,k+1 − sm−1
k },m > 1.

(6)
where ŵm

k,k+1 is thus the waiting time of the packet m at
node k+1 inferred by node k. We denote Ŵf1

k,k+1 the random
variable which corresponds to these samples. Node k+ 1 will
use the same recurrent function to obtain the values inferred
by node k. The corresponding random variable is denoted
Ŵf1

k+1,k+1. Local waiting times measured on the two nodes
k and k + 1 can then be mapped through the inferred values
of wm

k+1. Equation 5 is then approximated as:

E
[
E
[
Wf1

k

∣∣∣Wf1
k+1

]
Wf1

k+1

]
≈

E
[
E
[
Wf1

k

∣∣∣ Ŵf1
k,k+1

]
E
[
Wf1

k+1

∣∣∣ Ŵf1
k+1,k+1

]]
. (7)

The right hand side of Equation (7) is computed by the
use of two histograms evaluated at node k. Node k divides
the range of the computed values of Ŵf1

k,k+1 into L disjoint



intervals. The ith of these intervals is denoted ∆i. Node k
measures the waiting time of packet m, denoted wm

k and
uses the recurrent function given by Equation 6 to obtain
the corresponding sample ŵm

k,k+1 of the inferred waiting
time at the next queue (node k + 1). It obtains a set of
couples (wm

k , ŵ
m
k,k+1). In order to approximate conditional

expectations in Equation 7, in the interval ∆i, we set:

Ê
[
Wf1

k

∣∣∣ Ŵf1
k,k+1

]
(i) =

1

ci

M∑
m=1

wm
k 1lŵm

k,k+1∈∆i
. (8)

where ci is the number of samples ŵm
k,k+1 lying in the

interval ∆i, and M the total number of samples.
Node k+1 is able to apply exactly the same recurrent func-

tion to infer the values of ŵj
k,k+1 computed by node k. From

the inter-arrival times (that are measured on node k + 1), it
applies recurrently the first equation of the equation system 6.
These samples are denoted ŵm

k+1,k+1: waiting time on node
k + 1 of packet m inferred at node k + 1. They correspond
to the previously defined random variable Ŵf1

k+1,k+1. These
samples can be different on the one computed by node k as
some packets can be lost. We set:

Ê
[
Wf1

k+1

∣∣∣ Ŵf1
k+1,k+1

]
(i) =

1

c
′
i

M
′∑

m=1

wm
k+11lŵm

k+1,k+1∈∆i
.

(9)

where c
′

i is the number of samples ŵm
k+1,k+1 in ∆i, and M

′

the total number of samples.
Our estimator of Equation 7 is then given by:

Ê[E[Wf1
k

∣∣∣ Ŵf1
k,k+1]E[Wf1

k+1

∣∣∣ Ŵf1
k+1,k+1]] =

L∑
i=1

ci
M

Ê
[
Wf1

k

∣∣∣ Ŵf1
k,k+1

]
(i) · Ê

[
Wf1

k+1

∣∣∣ Ŵf1
k+1,k+1

]
(i)

(10)

V. NUMERICAL RESULTS

We now investigate the general accuracy of our proposed
solution. To simulate the real behavior of a network, and
thus getting the exact value for the variance of the end-to-
end delays, we use the discrete-event simulator NS-3 [18].
This allows us to consider different network configurations
(in terms of nodes, links, and buffers). The submitted traffic,
namely the primary flow and the other flows, is replayed from
a real trace that was collected from a campus at the university
of Stuttgart (Germany) [19]. The trace contains around 44
million events, and corresponds to 4 hours of communications
between 6 and 10 P.M. The packet size spreads a large range
of values, from 64 to 1500 bytes.

Once the simulator has been setup and run, we compute the
standard deviation of the end-to-end delay as found by our
solution. The standard deviation is statistically equivalent to
the variance (σ =

√
V), and has the same unit as the end-

to-end delay (in seconds). The computation is carried out on
100 consecutive packets. We repeat 1440 replications of the

same experience using various parts of the trace in order to
evaluate the statistical behavior of each solution. Note that, in
order to evaluate the performance of our solution, we also
run an Oracle solution. This latter collects the end-to-end
delays of each of the 100 probe packets, and then derives the
corresponding variance using the classical variance estimator.
Note that this can be easily done in the simulator since the
synchronization clock inside NS-3 is no longer an issue.

In addition to the results brought by our solution, we include
those delivered by a trivial technique. The trivial method sim-
ply approximates the end-to-end variance by summing together
the variance of the sojourn delays (waiting and transmission)
at each node along the primary path. By nature, the trivial
method neglects the covariance terms.

We consider two scenarios. Our first scenario, scenario A,
deals with a network composed of 4 nodes and a total of
two flows. Figure 2a depicts the corresponding topology. We
set the buffer at each node to a length of 15,000 bytes. The
transmission capacity of the links are fixed to C1,2=8, C2,3=5,
C3,4=3 Mbps. The primary path is shared by a secondary flow
that enters at node 2 and leaves at node 3. The secondary flow
sends its packets at a mean rate of 2 Mbps. As for the primary
flow, f1, we consider three levels of sending rate, namely 0.5,
1 and 1.5 Mbps.

The results for the scenario A are presented in Figures 3a,
3b, 3c. It displays the cumulative distribution function of the
relative error (in percents) committed by our solution and by
the trivial solution. When the rate of the primary flow f1 is
set to 0.5 Mbps, Figure 3a shows that, in more than 95%
of replications, our solution leads to a relative error for the
variance of the end-to-end delay less than 10%. Using the
trivial solution in these same conditions, only around 15%
of replications have an error below 10%. Figures 3b and 3c
report the corresponding results when the primary flow f1 is
increased to 1 and 1.5 Mbps, respectively. Although the values
slightly differ, the overall behavior of the proposed solution
and the trivial remains roughly the same.

We now turn to scenario B, illustrated by Figure 2b. Here,
the network comprises 6 nodes and a larger number of flows.
The transmission capacities of the links are as follows: C1,2=6,
C2,3=4, C3,4=7, C4,5=3, C5,6=5 Mbps. As for the multiple
secondary flows, the secondary flows f1,2, f2,4, f2,5, f3,4, f4,6

have sending rate of 1, 0.8, 0.2, 2 and 0.2 Mbps, respectively.
Note that, under these conditions, we ensure that the incoming
rate at each link remains below 70% of its capacity. Again,
we consider three levels of sending rate for the primary flow,
namely 0.5, 1 and 1.5 Mbps.

Figures 3d, 3e, 3f show the results found for scenario B.
Broadly speaking, the results are generally poorer than in
scenario A. For example, with a primary flow of rate 1
Mbps, 80% (compared to 95%) of replications lead to a
relative error on the variance of the end-to-end delay less
than 10%. Nonetheless, the proposed solution still significantly
outperforms the trivial solution. Also, we notice that as the
intensity of the sending rate of f1 increases, the accuracy
of our solution decreases. We believe that stems from the



Table I: Overall distribution of the relative error on the standard deviation of the end-to-end delay.

Rate of f1: 0.5 Mbps Rate of f1: 1 Mbps Rate of f1: 1.5 Mbps

Error ≤ 10% ≤ 20% > 30% Mean ≤ 10% ≤ 20% > 30% Mean ≤ 10% ≤ 20% > 30% Mean

σsol−scen−A 96.11 99.31 0.07 1.84 93.26 99.17 0.07 3.05 94.01 98.96 0.21 3.19
σsol−scen−B 93.06 99.58 0.14 3.80 79.40 97.77 0.07 6.02 63.37 93.75 0.07 8.47
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(a) Small study case with one bottleneck.
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(b) Bigger study case with two bottlenecks.

Figure 2: The primary flow f1 workload is set to 0.5, 1.0 and 1.5 (Mbps). In Figure 2a, the utilization rates at the first
bottleneck are 50%, 60% and 70%. In Figure 2b, the utilization rates at the first bottleneck are 37%, 50% and 63%, at the
second bottleneck are 32%, 50% and 66%.
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(a) Scenario A. Rate of f1: 0.5 Mbps.
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(b) Scenario A. Rate of f1: 1.0 Mbps.
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(c) Scenario A. Rate of f1: 1.5 Mbps.
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(d) Scenario B. Rate of f1: 0.5 Mbps.
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(e) Scenario B. Rate of f1: 1.0 Mbps.

0 5 10 15 20 25 30 35 40
Absolute Relative Error (%)

0

20

40

60

80

100
C

D
F

 (
%

)

σTrivial

σSol

(f) Scenario B. Rate of f1: 1.5 Mbps.

Figure 3: Cumulative distribution function of the relative errors for the standard deviation of the end-to-end delay for different
workloads of the primary flow f1.

increasing number of packet losses that disrupt our method.
Interestingly, the trivial methods tends to enhance as the rate
of f1 grows, but stays far less accurate than the proposed
solution. We believe that this improvement occurs because at
higher level of loads, the queuing delays become less variable
and so their correlation tends to decrease.

Finally, Table I summarizes the results obtained in these
two scenarios by our solution. We observe that in the many
studied examples, regardless of the actual value of sending rate
for f1, the relative errors on the estimation of the variance
of the end-to-end delay remains below 10% in over 90%
of the replications explored. The mean relative error of our
method tends to peak when the traffic load is high (with

a corresponding relative error around 10%), and in general,
delivers accurate results with a mean relative error less than
or close to 5% in most cases.

VI. CONCLUSION

With the development of SDN, computer networks aim at
gaining a better control on the management of their resources.
This may lead to cost savings and to a better handling of
flows requiring a specific type of QoS. However, to fulfil these
objectives, networks must be able to characterize the end-to-
end performance of flows. Unfortunately, computer networks
are usually not equipped with tools that allow direct end-to-
end measurements. Instead, networks have typically at their



disposal only local measurements, collected at each node.
Although evaluating the mean value of a path metric is usually
rather simple, things are becoming much more complex for
higher-order moments.

In this paper, we propose a new method to evaluate the
variance of the end-to-end delay based only on measurements
collected on nodes. The core of our solution is to link samples
of waiting times at different nodes in order to approximate
the corresponding covariance terms, needed to refine the
approximate value of the sought variance. We evaluate the
accuracy of our solution using two different scenarios. The
obtained results show that the method is generally good, with
a relative error on the estimated standard deviation of the
end-to-end delay usually close to 5%, though it may exceed
10% when the network is facing high levels of load and
experiencing packet losses.
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