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Abstract—We propose a short overview of models and
results based on spatial models used to evaluate the
performance of ad hoc networks. Locations of nodes are
distributed in a two dimensional area according to a
stochastic point process, which allows us to obtain the aver-
ages and distributions of different performance quantities.
It is particularly suited in the context of ad hoc networks
as the topology has an important impact on performance.
The different models presented are related to the radio
properties, connectivity and capacity of ad hoc networks.

Index Terms—Spatial model, point processes, ad hoc
networks.

I. I NTRODUCTION

Wireless networks and communication have wite-
nessed phenomenal growth in recent years. It has been
one of the fastest growing segments of the communica-
tions industry, surpassing wired communications in many
domains. The performance evaluation of these networks
is thus fundamental. While geographical aspects of wired
networks do not play an important role in performance,
the location of the nodes has a great impact in ad hoc
networks. For instance, if the density of nodes is small,
interference should be small as there are only a few
emitters, increasing the radio scope of the nodes. On the
other hand, a longer distance between the nodes should
limit the connectivity. Moreover, even for small intensity,
interference may be high if a set of emitting nodes are
gathered in the region where we measure interference.
All these phenomena are thus difficult to understand
as they depends greatly on the spatial distribution of
nodes. Static topologies, such as grids, and simulations
that take into account a finite set of topologies are
inaccurate. They consider only specific patterns and do
not garantee that the results obtained hold for other
patterns. Stochastic point processes are thus particularly
suited to the performance evaluation of ad hoc networks.
They allow us to obtain averages and distributions for
different quantities related to the performance of the
networks. These statistical quantities are based on an
infinite number of topologies (the samples). Another
benefit is in describing statistical geographical properties
with a few parameters (for example, we use only one
parameter for the Poisson point process), leading to
simpler interpretations of the results. It is worth noting
that the results obtained for ad hoc networks may also

be applied, in some cases, to more general wireless
networks [16].

In this paper, we propose a short overview of models
and results based on spatial models. We first present, in
Section II, two point processes. The first one is the clas-
sical Poisson point process and the second is the Matèrn
point process. In Section III, we study a link model, for
which link properties (interference,SINR, FER, etc.) are
calculated. In the next two sections, Sections IV and V,
we sketch the main results for connectivity and capacity
in ad hoc networks. We conclude in Section VI.

II. POINT PROCESSES

In this Section, we present two examples of point
processes which can be used to model locations of the
nodes of an ad hoc network. We are interested in point
processes distributed inIR2. We begin with the most
commonly used point process, the Poisson point process.
It has been used extensively in the modeling of ad hoc
networks, to model interference and radio properties [3]–
[5], [17], [26], to study the connectivity or capacity of
ad hoc networks [8], [9], [15], etc. One of the definitions
of the homogeneous Poisson Point process is as follows:

Definition 1. A homogeneous Poisson point processΦ
of intensityλ is characterized by two properties. They
are:

• The number of points ofΦ in a bounded Borel set
B has a Poisson distribution of meanλ|B|, where
|B| is the Lebesgue measure ofB in IR2.

• The numbers of points ofΦ in k disjoint borel sets
form k independent random variables.

A sample of a Poisson point process is shown in Fig-
ure 1(a). We can also consider inhomogeneous Poisson
point process. As the name indicates, the mean number
of points in a given area depends on the location of
this area. More precisely, the definition of the inhomo-
geneous Poisson point process is the same as definition 1,
except that the first assertion is changed to

• the number of points in a Borel setB has a Poisson
distribution of meanΛ(B), whereΛ is an intensity
measure.

In Figure 1(b), we draw a sample of such a process with
the intensity measure



2

(a) Homogeneous Poisson point process. (b) Inhomogeneous Poisson point pro-
cess.

(c) Mat̀ern point process.

Fig. 1. Samples of point processes.

Λ(B) =

∫

B

cos(‖x‖)dx

While the Poisson point process is suitable for mod-
eling all the nodes of an ad hoc network, and can
thus be used to evaluate the capacity, connectivity and
performances of routing protocols, it should not be used
systematically to study radio properties, such as interfer-
ence, Signal to Interference-plus-Noise Ratio (SINR), Bit
Error Rate (BER), etc. Indeed, all these quantities depend
on interference, and interference at a given time does not
depend on all the nodes but only on the emitter locations.
The Poisson point process is not always suitable for
modeling these emitters, as it supposes, in some way, that
they are independently distributed. However, in practice,
most of the radio technologies (802.11, 802.15.4, etc.)
use CSMA/CA medium acess protocol, which consists,
for a potential emitter, in listening to the channel before
emitting. If the interference level is greater than a given
threshold, the channel is presumed busy and the trans-
mission is delayed. Otherwise the emitter transmits its
frame. This mechanism leads to a distribution of emitters
that is more correlated than Poisson point processes.

An example of a point process which captures this
phenomenon is the Matèrn point process. It was origi-
nally presented in [20]. A more accessible presentation
of this point process can also be found in [25]. It belongs
to the family of hard core point processes, where the
points are forbidden to lie closer together than a certain
minimum distanceh. In our case, the inhibition distance
h can be interpreted as the distance at which a potential
emitter detects the emission from a neighbor. Below is
the definition of the Mat̀ern point process.

Definition 2. Let Φ be a homogeneous Poisson point
process of intensityλ. We associate to each pointz of
Φ, a markmz uniformly distributed in[0, 1]. The points
of the Mat̀ern point process are the pointsz of Φ such
that the ball B(z, h) centered atz and with radiush

does not contain other points ofΦ with marks smaller
than mz. Formally,

ΦM = {z ∈ Φs.t.m(z) < m(y)∀y ∈ Φ ∩ B(z, h)\{z}}
This point process leads to more regular patterns as

can be seen in Figure 1(c).

III. L INK MODEL

In this Section, we present a radio model based on
the Poisson point process. The model is very general as
it can be used for infrastructure-based wireless networks
and ad hoc networks. It has been presented in [2] and [4].
The proofs and computations details can be found in
these two articles.

The model involves considering a homogeneous Pois-
son point processΦ of intensity λ to model emitter
locations at a given time. In order to consider a particular
link, we add two other points to the point process.
The first one, located at the originO, is the receiver.
The second oney, located at a distance‖y‖ from the
origin is the emitter. In the following, the different radio
properties are related to the link between these two
points.

A. Interference

Interference is one of the major quantities involved in
the computations of link properties suchSINR, BERand
the Frame Error Rate (FER). Under certain assumptions,
the interfence at a given location can be considered as
the sum of all of the signals from all of the emitters. Let
IΦ(x) be the interference atx. IΦ(x) is defined as

IΦ(x) =
∑

z∈Φ

Szl(‖x − z‖) (1)

where Sz is the emission power fromz and l(.)
is the attenuation function. The sequence(Sz)z∈Φ is
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Fig. 2. Interference and FER.

a sequence of positive random variables. It allows us
to take into account radio phenomenae such as fading
and shadowing. The probability density function of the
interference cannot easily be computed. Nevertheless,
due to the nature of the Poisson point process, we can
compute its Laplace transform:

LIΦ(x)(s) = E

[

e−sIΦ(x)
]

= E

[

∏

z∈Φ

e−sSzl(‖x−z‖)
]

(2)

Under certain assumptions onSz andl(.) given in [4],
the right hand side of equation 2 can be computed.
We use the generating functional of the Poisson point
process (see [25] for more details), leading to

LIΦ(x)(s) = e−λ2π
R +∞
0 (1−E[e−sSl(u)])udu (3)

whereS is a random variable with the same distribu-
tion as the family(Sz). We can then use Laplace inver-
sion techniques to obtain the probability density function
(pdf) of the interference numerically. In Figure 2(a), we
plotted the interferencepdf for different radio environ-
ment. We consideredS as the product of two random
variablesSh and F , respectively modelingshadowing
andfading. Sh follows a log-normal distribution whereas
F follows a gamma distribution [24]. We observe that
the distribution always presents the same form: a peak
and a heavy tail. This observation confirms the results
of [12], [17], [26], where a heavy-tailed interference dis-
tribution is observed for Poisson distributed interferers.
Several distributions such as K-distribution, Weilbull,
logNormal or Laplacian distributions have been proposed
to model or extrapolate this heavy-tailed distribution.
More recently, alpha-stable distributions have also been
proposed [17].

These results are linked to the nature of the point
process. For other point processes, such as the Matèrn,

which models the CSMA/CA protocol, results may be
very different. For low intensity, interference distri-
butions are similar for the two point processes. But
for higher intensity, there is a significant difference.
The intensity of the Mat̀ern point process is bound by

1
πh2 , limiting the interference level compared to the
Poisson point process. Another difference is the tail of
interferencepdf, which is heavier for the Poisson point
process as we can have several emitters very close to the
points where we measure interference. For the Matèrn,
the inhibition distance between the emitters limits the
number of emitters in the neighborhood. The properties
of interference based on Matèrn point processes have
been studied in [23] and [1].

B. FER

The computation of the Frame Error Rate (FER), is
often based on theSINR. We define the SINR for a
transmission fromy to the originO as

SINR =
Sl(‖y‖)

W + γIΦ(O)

whereW represents the noise.S is the signal power
for an emission fromy to O. It follows the same
distribution as the sequence(Sz)z∈Φ. γ is a factor that
allows to fine-tune the effect of transmission from the
other emitters on the interference. There are different
approaches for computing the probability of a frame
not being received. For instance, we can consider that
a frame is not received if theSINR is less than a given
thresholdθ:

FER = P (SINR < θ) (4)

The quantity above cannot be analytically computed
in most cases. But, it can be numerically evaluated from
the distribution of interference obtained by the inversion
of the Laplace transform. Nevertheless, there is a case
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where we can find a closed formula [4]. It corresponds
to the case whereS and (Sz)z∈Φ follow exponential
distributions (with parameterµ) modeling aRayleigh

fading. Under this particular assumption, equation 4 can
be expressed with regard to the Laplace transform ofΦ
(given by equation 3):

FER = P

(

Sl(‖y‖)
W + γIΦ(O)

< θ

)

= P

(

S < θ
W + γIΦ(O)

l(‖y‖)

)

= E

[

e
−θ

W+γIΦ(O)

l(‖y‖)

]

= LIΦ(O)(
µθγ

l(‖y‖) )LW (
µθ

l(‖y‖) )

In Figure 2(b), we plotted the probability that the
receiver at the origin receives the frame (1-FER) when
the distance betweeny and O varies (‖y‖ = r in
the figures). We considered two distributions forS,
the degenerate distribution (S = constant) and the
exponential distribution. We also considered the cases
whereγ = 0 and whereγ = 1. For γ = 0, interference
is not taken into account. A frame is then received if
P(SNR > θ). The caseγ = 1 supposes that all the
emitters emit on the same channel. All the power trans-
missions from other emitters are then taken into account
in the SINR. S = constant and γ = 0, corresponds
to the simplest case:1 − FER = 1 until Sl(r)

W
reaches

θ, then 1 − FER = 0. When γ = 1, the interference
penalizes the value of theSINRand1− FER becomes
smaller. WhenS is exponentially distributed, the curve
decreases slowly from1 to 0. The probability that the
frame is lost may be not negligeable, even if the distance
between the emitter and the receiver is small, while
the probability of the frame being received is positive
even when the distances are great. A more detailed
presentation of these results can be found in [5].

IV. CONNECTIVITY

The study of connectivity is related to the study of a
graph(E, V ), where the vertexV are the nodes of the
ad hoc network, and where the edgesE are the links
between the nodes. Except where otherwise stated, we
suppose that node locations are represented by a Poisson
point processΦ with intensityλ. We say that the newtork
is connected or connex, if and only if there is a path
between all the pairs(x, y) ∈ V 2, i.e. between all the
pairs of nodes. A path between two nodes(x, y) is a
finite sequence of nodes(xk)k=0,..,N such thatx0 = x,
xN = y, and where the edges(xk, xk+1) ∈ E for all
k = 0, .., N − 1.

The radio model has an important impact on connec-
tivity as it defines when there is an edge between two
nodes. We consider here two kinds of radio models. A
simplistic model, called the Boolean model, suppose that
there is a link between two nodes if and only if the

distance between the two nodes is less than a certain
rangeR. The second model is the Signal To Interference
Ratio Graph (STIRG) presented in [6]. It supposes that
a directional link exists between two nodes(x, y) if the
SINRat y is smaller than a given thresholdθ:

Sl(‖x − y‖)
W + γIΦ(y)

< θ (5)

whereIΦ(y) is the interference aty andS is constant
and the same for all the nodes. The unidirectional links
are ignored, therefore a link exists in the STIRG graph
if both links (x, y) and(y, x) fulfill the condition given
by equation 5.

In Figures 3(a), 3(b) and 3(c), we plotted the boolean
model andSTIRGgraphs for the same sample of the
Poisson point process and two different values ofθ. It
is clear that the STIRG model limits the connectivity as
it takes into account interference generated by the other
nodes.

In the next two Sections, we distinguish two ap-
proaches: the case where the nodes are distributed in
the whole plane, and the case where they are distributed
in a finite area.

A. The infinite case

In the case where the point process is distributed in
IR2, it does not make sense to compute the probability
of the graph being connex. Indeed, this probability is
always nil as there is always a positive probability of
a node being isolated. The study of connectivty is then
related to the existence of an infinite component, i.e. a
connex subgraph with an infinite number of nodes, rather
than the full connectivity in the whole graph.

The study of such a component is linked to percolation
theory. A reference book on percolation for the boolean
model is [21]. For this model, it has been shown that
there is a critical intensityλc (for a given range) for
which the infinite component exists with a positive
probability. Whenλ < λc, it is the subcritical phase
where the infinite component exists with probability0.
In the supercritical phase (whenλ > λc) the probability
of the existence of an infinite component is strictly
positive and, is unique when it exists. For discrete perco-
lation (see [13]) the critical value has been analytically
computed, but there are only numerical evaluations or
analytical bound for the continuum case [18].

For the STIRG model, the authors of [6] tried to find
similar results. In the STIRG model, when the intensity
of the underlying Poisson point process increases, it does
not improve the connectivity as it leads to a greater
interference level. However, they show that ifλ > λc,
a critical value of γc exists for which the graph is
subcritical (forγ < γc) and supercritical (forγ > γc).
The existence of this critical value is discussed in [6],
[7], [10], and depends on the attenuation functionl(.).
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(a) Boolean graph. (b) STIRG withθ = 2.0. (c) STIRG withθ = 5.0.

Fig. 3. Connectivity graphs.

B. The finite case

In the case where the point process is disitributed in
a finite area, the approach is different. The observation
windows where the nodes are distributed are generally a
ball or a square of unit area.n nodes are then uniformly
distributed in this area.

For the boolean model, instead of the infinite case,
the probability of having the graph fully connected is
positive. But if the radio range is less than the diameter
of the observation window, the probability of the graph
not being connex is also positive whatever the value of
n. Indeed, the probability of a node being isolated (with
no link) is always positive. As a result, the connectivity
for the finite case is also considered as an asymptotic
property. It consists in studying the tradeoff between the
radio range and the number of nodes asn tends to infin-
ity to get a fully connected graph. The most important
result is presented in [14]. The authors show that if the
radio rangeR(n) verifies πR2(n) = log(n)+c(n)

n
with

limn→+∞ c(n) = +∞, then the graph is asymptotically
connex (limn→+∞ P (the graph is fully connected) =
1).

For the STIRG model, it has been proposed in [6] to
transpose the results of the infinite graph to the finite
one.

V. CAPACITY

Capacity plays an important role in the performance
evaluation of ad hoc networks as it limits the applications
which can be used, the number of nodes for a given
application, etc. The very famous paper which addressed
the problem of capacity for the first time is [15]. Numer-
ous papers followed with more elaborate radio assump-
tions, but the definition of capacity and point processes
used to model node locations still remain the same. The
observation window is a ball of unit area, denotedB. We
considern nodes distributed uniformly inB. We suppose
that each node is a source emitting to another node
randomly chosen among the other nodes. The capacity,

often called throughput per node or feasible throughput,
and denotedc(n), is then defined as the mean number
of bits per second that a node is able to transmit to its
destination. This capacity must be obtained for all the
pairs (source-receiver).

The model used to set up the links between the
nodes is similar to the STIRG model. We shall assume
that there is a link between two nodes if theSINR is
greater than a given thersholdθ. The first major result
on capacity, given in [15], states that the capacity is
O

(

1√
n

)

andΩ
(

1√
n log n

)

.

c(n) = Ω
(

1√
n log n

)

if there is a constanta such that

lim
n→+∞

P

(

c(n) ≥ 1√
n log n

)

= 1 (6)

This result gives a lower bound on the achievable
throughput. The other result,c(n) = O

(

1√
n

)

, is similar
to formula 6, but gives an upper bound on the capacity.
To prove the lower bound, the authors built a routing
mechanism and a TDMA scheme, which allows each
node to reach this capacity. For the upper bound, they
showed that an inhibition radius exists around each emit-
ter. A transmission in this area from another emitter will
make the reception impossible. Therefore, it bounds the
number of simultaneous emitters and thus the capacity.

A natural question arises. Is the upper bound given
by Gupta et. al achievable or not? In [11], the authors
showed that, for a particular attenuation function, the
upper bound is also a lower bound

(

c(n) = Ω
(

1√
n

))

.
As above, they prove it by building a particular routing
scheme. A certain number of ”highways”, made up
of connected sets of nodes and crossing the network
horizontally, are used to transport all traffic from all of
the sources. These highways are then the bottleneck of
the network. Each highway is built in such a way that the
capacity of each highway is constant, and is responsible
for carrying the traffic of

√
n nodes. This construction

leads to a feasible throughput proportional to1√
n

.
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It is worth noting that all these results hold for a par-
ticular family of attenuation functionl(u) = u−αe−au

with α > 2 anda ≥ 0. These functions tends to infinity
as the distanceu tends to0. As a consequence, there is
always a distance between the source and the receiver for
which the transmission will succeed whatever the inter-
ference level. Moreover, close interferers can drastically
increase interference. So, depending on the point process
intensity, this attenuation function increases or decreases
the connectivity compare with a more realistic attenua-
tion function with the forml(u) = min (1, x−αe−ax).
The effects of the attenuation function on capacity is
discussed in [10].

In these radio models, the link exists if theSINR is
greater thanθ. The transmissions on these links are then
supposed to be systematically successful. For a more
realistic radio model, given that, whatever the value of
the SINR, transmission errors are always possible, the
results on capacity change drastically. In [22], the authors
show that this assumption decreases the capacity. They
found an upper bound on the capacity proportional to
1
n

(

c(n) = O
(

1
n

))

. For other ad hoc networks, such as
Vehicular Ad-hoc NETworks (VANET), where the nodes
are vehicles moving on a road or a highway, the previous
models cannot be used. Indeed, the toplogy is more a
set of nodes distributed on a straight line than in a two-
dimensional area. These chains of nodes are particularly
penalizing for capacity, which is found proportional to
1
n

(see [19]).

VI. CONCLUSION

We have presented a brief overview of spatial models
for the performance evaluation of ad hoc networks.
The use of the point processes allows us to estimate
the performances of these networks. Spatial modeling
proved to be a powerful tool for modeling ad hoc
networks. It allows us to understand the effects of the
different parameters on performance, and to observe the
behavior of these networks on different scales.

In addition to link properties such as interference,
SINRandFER, we have presented results on connectivity
and capacity. All analytical results of these aspects are
asymptotic results. They give qualitative results on the
behavior of ad hoc networks, and can be used as approx-
imations for their dimensioning. But most of the existing
models cannot be used as fine grain dimensioning tools.
Additional work is still necessary to take into account
more realistic radio assumptions and point processes.
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