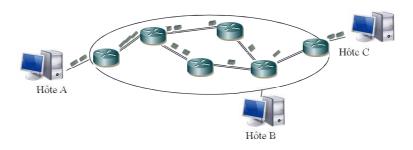

	1
	IDV / 4
LE PROTOCOLE	IPV4
Anthony Busson	
Altillotty Bussoll	


	2
Introduction	

Service en mode non connecté (*Datagram*)

- □ Protocole très simple pour augmenter les capacités d'acheminement
- ■Une seule phase
 - ☐ Transfert des données
- ☐ Service non fiable
- □Plusieurs chemins possibles pour des paquets d'un même message

6

Ce que définit le protocole IP (RFC 791)


- Format/Architecture d'adressage
- Format des Paquets
- Opération à effectuer dans les hôtes et les routeurs
- Un certain nombre de protocoles sont satellites au protocole IP:
 - Messages de contrôles : ICMP
 - Gestion des groupes pour le multicast : IGMP
 - Résolution d'adresses : ARP
 - Protocoles de routage : RIP, OSPF, BGP, etc.

Plan du cours Adressage · Format des adresses Architecture de l'adressage (plan d'adressage) Format des paquets ARP ICMP IΡ Procédure d'acheminement 14 heures · Opérations effectuées sur les paquets - Table de routage Routage statique Routage dynamique Principe · Exemple avec RIP DNS: Domain Name System 2h

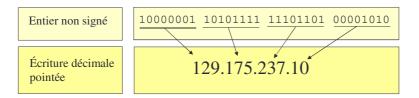
Plan du cours (2) - TP

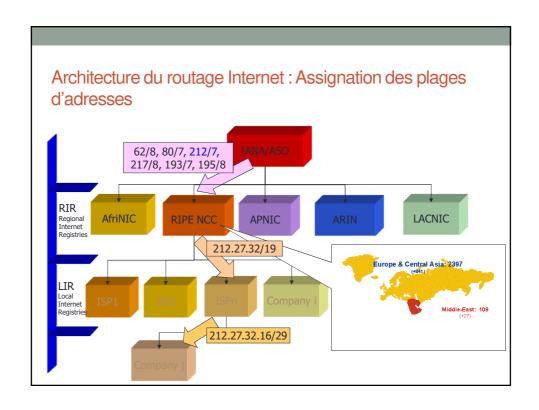
- 3 TPs
 - · Configuration IP de base
 - · Configuration IP des routeurs
 - Routage statique
 - Routage dynamique avec RIP

1.

10

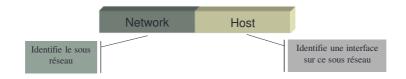
Adressage des stations

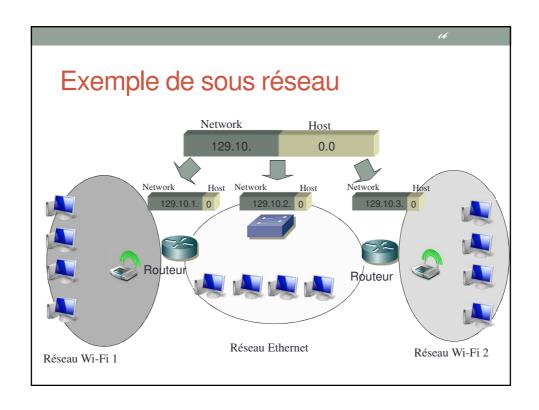

 Identifie de manière unique un équipement sur Internet


Une interface = Une adresse IP

- Un PC/routeur a donc autant d'adresses que d'interfaces.
- En IPv4, pas plus d'une adresse par interface.

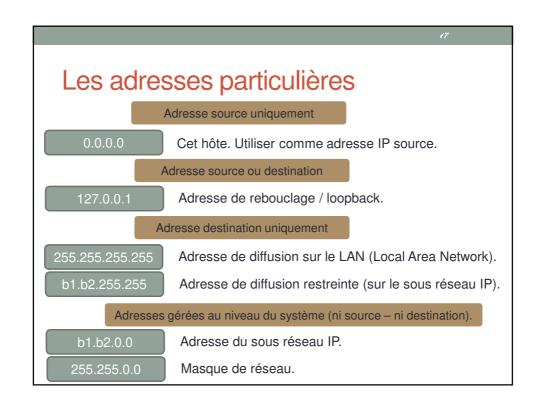
Format des adresses IP


- Les adresses IP sont codées sur 4 octets (32 bits)
- Elles sont gérées comme des entiers non signés (u_int32) par les systèmes
- Ils sont écrit sous forme « décimales pointées » par les administrateurs



Notion de sous réseau

- Un nouveau découpage de la plage d'adresse IP est faite au sein du site
- On assigne à chaque sous-réseau une sous plage d'adresses
- Sous-réseau = réseau physique
- Une adresse IP est décomposé en 2 parties



Adresse réseau - hôte · La séparation réseau – hôte n'est pas fixe L'information sur la taille est nécessaire au routage La taille de la partie réseau est exprimée au travers du masque de réseau Principe: Adresse IP Network Host Masque (en binaire) 0000000 Autant de bit à 0 que Autant de bit à 1 que de bits de bits dans la partie dans la partie réseau de hôte de l'adresse

Masque de réseau: Netmask

- · Utile au routeur et à l'entité IP de la station
 - pour tester si 2 stations sont sur le même sous-réseau
 - l'opération est la suivante
 - Netmask & Adresse-IP1 = Netmask & Adresse-IP2 <=> les deux adresses appartiennent au même réseau
- Pour calculer l'adresse réseau
 - Adresse réseau = Adresse-IP & Netmask
- Attention 2 notations pour les adresses / masques
 - · 129.12.13.11 255.255.255.0
 - 129.12.13.11/24

				1	18
Les classes d'adresses					
Classe	Adresse (pour le premier octet)	Masque	Nombre d'adresses pour un réseau de cette classe	Exemple	Autre
Α	De 1 à 126	255.0.0.0	16777214	120.0.0.0/8	
В	De 128 à 191	255.255.0.0	65534	160.0.0/16	
С	De 192 à 223	255.255.255.0	254	198.56.45.0/24	
D	De 224 à 239	-			Multicast
E	De 240 à 255	-			Réservé

19

Exercice 1: notations

- Donnez les notations « / » pour les réseaux suivant:
 - 1. 12.7.23.0 255.255.255.0
 - 2. 12.167.0.0 255.255.0.0
 - 3. 12.167.128.0 255.255.240.0
 - 4. 149.234.56.64 255.255.255.192
 - 5. 131.240.0.0 255.240.0.0
- Ces adresses réseaux sont-elles cohérentes?
 - a. 34.78.145.128/25
 - b. 176.89.23.1/24
 - c. 123.89.11.160/26
 - d. 123.89.11.168/26

2:

Exercice 2: adresse réseau

- · Donnez les adresses réseau des PCs suivant:
 - 1. 12.167.23.45 255.255.255.0
 - 2. 12.167.23.45 255.255.255.192
 - 3. 12.167.23.45 255.255.240.0
 - 4. 149.234.56.67 255.255.255.0
 - 5. 131.124.11.231 255.255.255.192

L

Exercice 3: même sous réseau?

· Les machines A et B sont elles sur le même sous réseau?

Machine A	Masque de A	Machine B	Masque de B
12.123.89.123	255.255.255.0	12.123.89.12	255.255.255.0
89.34.78.111	255.255.0.0	89.34.157.78	255.255.0.0
173.55.99.1	255.255.255.252	173.55.99.6	255.255.255.252
156.56.78.129	255.255.255.128	156.56.78.124	255.255.255.128
187.45.129.1	255.255.192.0	187.45.188.219	255.255.192.0

2E

Exercice 4: les IP d'un sous-réseau

 Pour les sous réseaux ci-dessous, donnez les plus petites et plus grandes adresses IP:

Adresse réseau	Masque	Adresse réseau (notation /)	Plus petite adresse	Plus grande adresse
123.12.34.0	255.255.255.0	123.12.34.0/24		
13.34.7.0	255.255.255.192	13.34.7.0/26		
1.3.5.64	255.255.255.224	1.3.5.64/27		
45.78.0.0	255.255.0.0	45.78.0.0/16		
34.200.0.0	255.248.0.0	34.200.0.0/13		

2

Effectuer un plan d'adressage

- Consiste à redécouper une plage d'adresses donnée pour adresser plusieurs sous réseaux
- Résultat: un ensemble de (adresse réseau, masque)
- · Le découpage dépend
 - · du nombre de sous réseaux que l'on souhaite allouer
 - Du nombre de PCs/adresses sur chacun des sous réseaux
- Exemple de méthode
 - Mettre sous forme binaire l'octet (ou les octets) se trouvant à la limite /network / host
 - · Suivant les données du problème:
 - Calculer le nombre de bits nécessaire pour adresser les sous-réseaux (2 bits pour 4 sous réseaux par exemple)
 - Ou calculer le nombre nécessaire de bits pour pouvoir adresser l'ensemble des machines du sous réseaux
 - · Donnez des valeurs binaires différentes pour chacun des sous réseaux
 - · Calculez les adresses réseau et le nouveau masque

Exercice 5: subnetting simple

- On a obtenu la plage d'adresses 200.12.156.0/24 pour notre réseau.
- · Celui-ci à la topologie suivante:

 Proposez un plan d'adressage pour chacun des 2 sous-réseaux (adresse réseau et masque)

Exercice 6 : subnetting plus compliqué

- On a obtenu la plage d'adresses 200.12.200.0/21 pour notre réseau.
- Celui-ci est composé de 4 sous réseau

Réseau 1

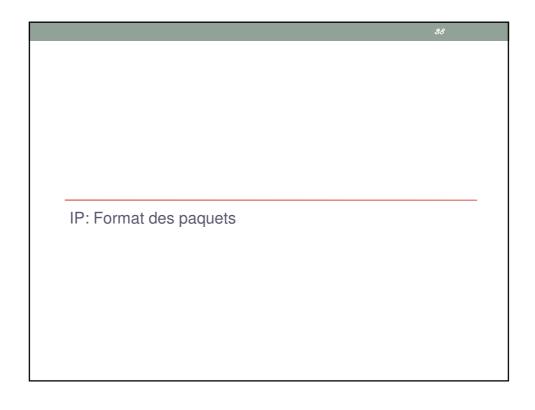
Réseau 2
Réseau 4

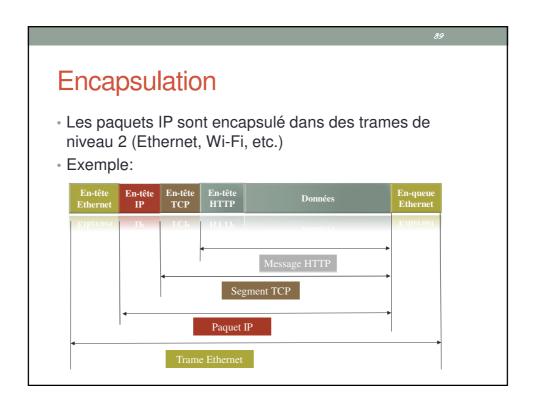
 Proposez un plan d'adressage pour chacun des 4 sous-réseaux (adresse réseau et masque)

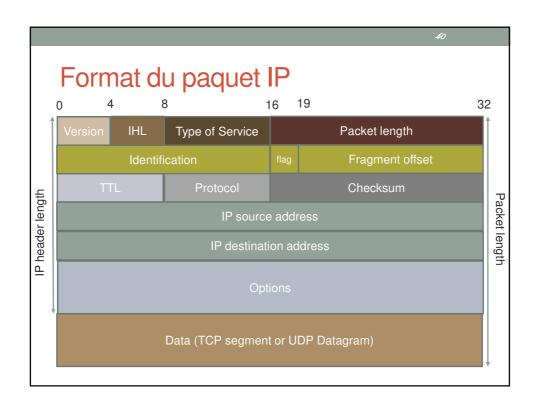
Exercice 7: Lister les sous réseaux

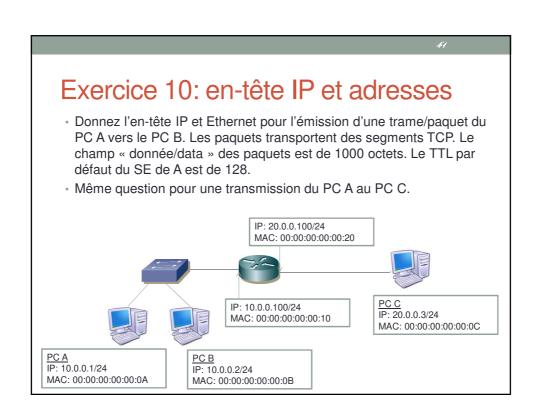
- Un réseau ayant pour adresse 134.214.0.0/16 est découpé en sous-réseaux qui ont pour masque 255.255.252.0.
- Donnez les adresses possibles pour ces sousréseaux.

Exercice 8: sous réseaux d'une taille donnée

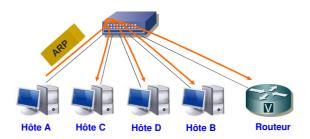

- Un réseau a pour adresse 160.80.0.0 et pour masque 255.255.0.0. On souhaite le découper en sous-réseaux, et il est attendu environ 2000 machines sur chacun d'eux.
- Donnez les adresses possibles pour ces sous-réseaux.


Exercice 9 : subnetting encore plus compliqué


- On a obtenu la plage d'adresses 200.12.200.0/22 pour notre réseau.
- Celui-ci est composé de 3 sous réseaux mais avec des besoins hétérogènes.



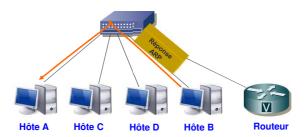
- Proposez un plan d'adressage pour chacun des 3 sous-réseaux (adresse réseau et masque)
- Donnez l'adresse d'un PC sur chacun de ces sous réseau


ARP (Address Resolution Protocol)
La résolution d'adresses

48

La résolution d'adresse

- l'adresse physique est l'adresse sur le sous-réseau soit :
 - l'adresse Ethernet / Wi-Fi (IEEE 802)
- Comment associer une adresse IP à une adresse physique ?
 - · Dépendent du type de réseau
 - · Deux catégories :
 - Résolution statique (table)
 - · Résolution dynamique
 - Exemple de résolution dynamique pour Ethernet, Wi-Fi : ARP


Address Resolution Protocol

Fonctionnement de l'ARP (exemple avec l'Ethernet)

- Recherche par A de l'adresse Ethernet de B (l'adresse IP de B est supposée connue).
- Diffusion (en Ethernet: FF-FF-FF-FF) d'une requête ARP.

Address Resolution Protocol

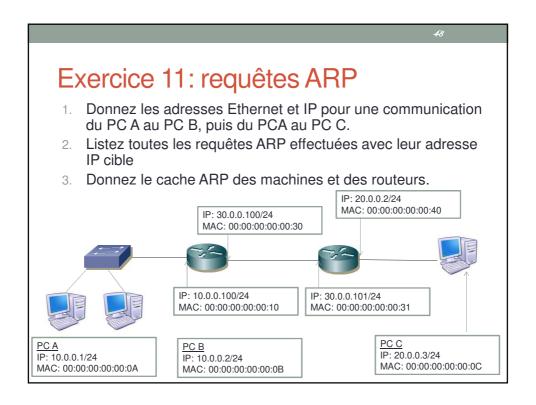

Fonctionnement de l'ARP (exemple avec l'Ethernet)

- Recherche par A de l'adresse Ethernet de B (l'adresse IP de B est supposée connue).
- Diffusion (en Ethernet: FF-FF-FF-FF) d'une requête ARP.
- Si un Hôte reconnaît son adresse IP, il répond en unicast à l'émetteur de la requête. L'un des champs de la réponse contient alors l'adresse MAC de B.

16

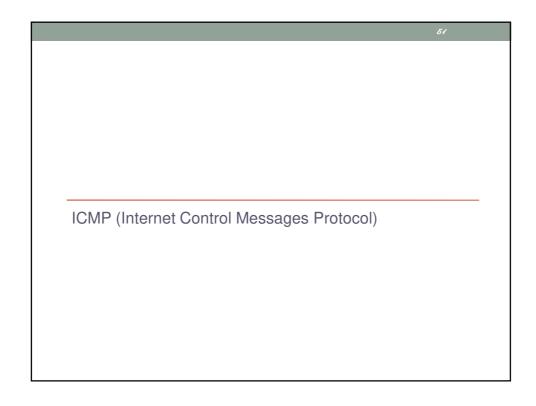
Requête ARP

- Format des requêtes/réponses
 - Encapsulés directement dans les trames de niveau 2.



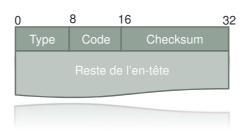
- Un paquet envoyé entraîne un échange ARP (1 broadcast
 - + 1 réponse)
 - · Trafic énorme
 - Gestion de caches pour minimiser les échanges

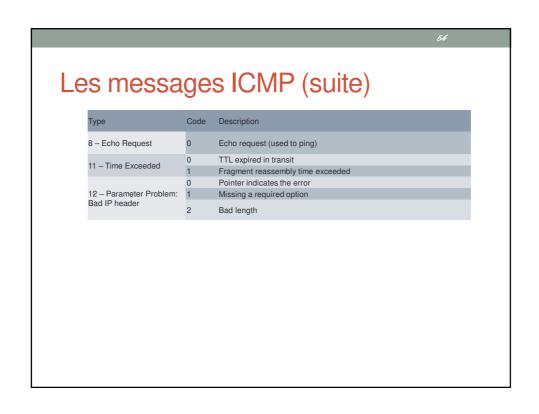
47


Cache ARP

- Une table permet de conserver les résolutions ARP qui ont déjà été effectuées.
- · Cette table associe les adresses MAC aux adresses IP.
- La gestion de ces caches (temps durant lequel on garde une entrée, etc.) n'est pas normalisé.
- Avant d'émettre un paquet IP,
 - On vérifie que l'adresse MAC correspondante est dans le cache
 - Si oui, on utilise cette adresse MAC (pas de requête ARP)
 - · Sinon, on génère une requête ARP

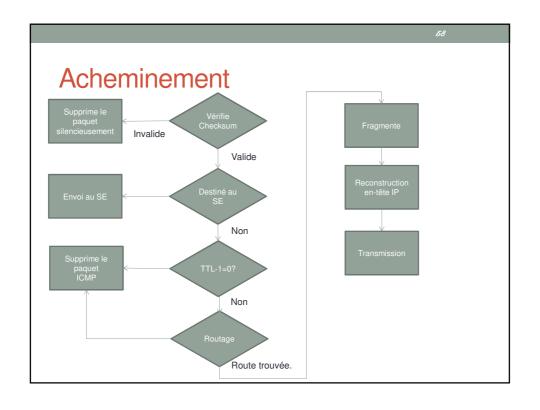
Exercice 12: questions diverses


- 1. Qu'est ce qui garantit l'unicité des adresses MAC?
- Pourquoi les cartes Ethernet ont elles des adresses?
- 3. Qu'est ce qui garantit l'unicité des adresses IP?
- 4. Dans quel ordre sont transmis les en-têtes Ethernet et IP?
- 5. Quels sont les champs de l'en-tête IP qui change au cours de l'acheminement?
- 6. Quels sont les champs de l'en-tête Ethernet qui change au cours de l'acheminement (sur un sous réseau donné)?
- 7. Qui (quel logiciel) envoi les requêtes ARP? Qui gère le cache ARP?
- 8. Que se passe t-il si il n'y a pas de réponse à une requête ARP?
- 9. Une même requête ARP peut elle être diffusée sur plusieurs sous réseau?


ICMP

Internet Control Message Protocol

- Encapsulé dans un paquet IP
- Permet a un routeur/PC de renvoyer un compte-rendu sur un problème rencontré dans le relayage d'un paquet
- Peut servir à autre chose : ping, etc.
- Son format est le suivant:



Туре	Code	Description	
0 – Echo Reply	0	Echo reply (used to ping)	
	0	Destination network unreachable	
	1	Destination host unreachable	
	2	Destination protocol unreachable	
	3	Destination port unreachable	
	4	Fragmentation required, and DF flag set	
	5	Source route failed	
	6	Destination network unknown	
3 - Destination Unreachable	7	Destination host unknown	
	9	Network administratively prohibited	
	10	Host administratively prohibited	
	11	Network unreachable for TOS	
	12	Host unreachable for TOS	
	13	Communication administratively prohibited	
	14	Host Precedence Violation	
	15	Precedence cutoff in effect	

Exercice 13: tracer la route On cherche à implémenter une application qui permettrai de trouver le chemin entre deux machines. Par chemin, on entend adresse IP, éventuellement nom, des routeurs entre les deux machines. Comment à partir des messages ICMP cela est il possible? PCA PCA

IP: Acheminement des paquets et routage (local)

Routage direct - indirect

- · Lorsqu'une machine veut émettre un paquet
 - Applique son masque de réseau (ET logique) à l'adresse IP destination. Elle obtient une adresse réseau.
 - · Compare cette adresse réseau à sa propre adresse réseau:
 - Si elles sont identiques : routage direct (requête ARP au destinataire)
 - Si elles sont différentes : routage indirecte (on envoi le paquet au routeur: requête ARP au routeur)

Configuration du client

- · 3 éléments à configurer
 - Adresse IP
 - Masque de réseau
 - · Adresse du routeur

Attention: donnez l'adresse du routeur du même sous réseau (un routeur a plusieurs interfaces).

Sous linux

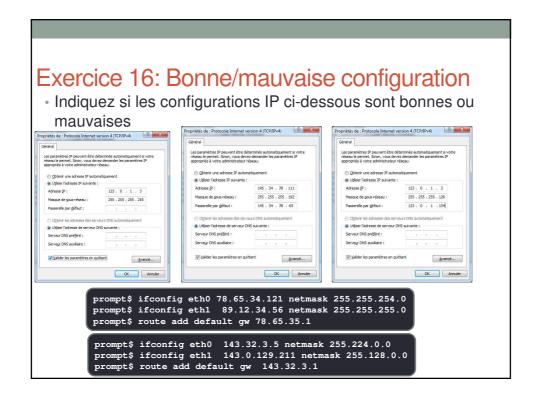
ifconfig eth0 192.168.1.2 netmask 255.255.255.0 route add default gw 192 168 1 1

Sur un routeur cisco (assignation d'une adresse à une interface):
router(conf)#interface fastEthernet 0/1
router(conf-if)#ip address 10.0.0.1 255.255.255.0
router(conf-if)#no shutdown
router(conf-if)#end

Exercice 14: routage directe/indirecte?

- · Le PC A a deux adresses IP:
 - 12.3.5.8/24 pour sa carte Ethernet
 - 128.12.45.126/25 pour sa carte Wi-Fi
- Indiquez pour les adresses IP destinations suivantes si il s'agit de routage directe ou indirecte:

Adresse IP destination	Réponse
12.3.7.0	
128.12.45.13	
12.3.5.252	
128.12.45.131	
78.12.34.67	
12.3.5.141	


Exercice 15: configuration et acheminement

· La configuration d'un PC est la suivante:

```
prompt$ ifconfig eth0 123.0.0.1 netmask 255.255.255.0
prompt$ ifconfig wlan0 190.0.0.161 netmask 255.255.255.192
prompt$ route add default gw 190.0.0.129
prompt$
```

- Pour les paquets à destination des adresses suivantes indiquez:
 - · Routage directe / Indirecte
 - Adresse IP cible de la requête ARP correspondante

Adresse IP	Adresse IP (suite)
91.1.0.23	34.67.89.1
123.89.7.1	123.0.3.4
190.0.0.225	190.0.0.126
123.0.0.24	56.11.2.1
190.0.0.181	190.0.0.130

Exercice 17: questions

- Que se passe-t-il si il n'y a pas de routeurs par défaut?
- Une interface IP peut-elle avoir plusieurs adresses IP sur le même sous réseau?
- Une interface IP peut-elle appartenir à plusieurs sous réseaux?
- Que se passe-t-il si deux machines du même sous réseau ont la même adresse IP?

Table de routage (1)

- La table de routage permet à un routeur/hôte de connaître le prochain saut (destinataire finale ou routeur)
- Elle est basée uniquement sur les adresses réseaux
- Si routage indirecte, elle indique l'adresse IP du prochain saut et l'interface à utiliser (facultatif) sinon elle indique l'interface (+un flag)
- Structure (adresse réseau ; netmask ; adresse IP du prochain saut ; interface)
- · Algorithme de sélection: pour chaque ligne
- Appliquer le masque de réseau à l'adresse IP destination et comparer avec l'adresse réseau.
- Si il n'y a pas correspondance passer à l'entrée suivante
- · Sinon envoyer le paquet au prochain saut.

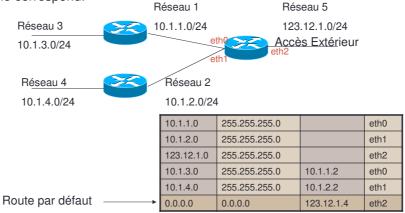
Exemple : on reçoit le paquet IP à destination de 192.168.129.11

Adresse réseau	netmask	@IP prochain saut	Interface
132.23.15.0	255.255.255.0	142.15.1.1	eth0
10.0.0.0	255.0.0.0	142.15.1.2	eth0
192.168.0.0	255.255.128.0	124.3.2.4	eth1
192.168.128.0	255.255.192.0	124.3.2.1	eth1

Question: pourquoi a-t-on besoin de l'adresse IP du prochain saut et pas juste de l'interface?

Table de routage (2)

- Plusieurs entrée de la table de routage peuvent correspondre (dû à l'agrégation des adresses réseau)
- Règle: sélectionner parmi les entrées de la table de routage dont l'adresse réseau correspond au paquet à acheminer celle qui a le plus long masque de réseau (le plus de 1 en binaire).


Exemple: on reçoit le paquet IP à destination de 192.168.129.11

Adresse réseau	netmask	@IP prochain saut	Interface
132.23.15.0	255.255.255.0	142.15.1.1	eth0
192.168.0.0	255.255.0.0	142.15.1.2	eth0
192.168.0.0	255.255.128.0	124.3.2.4	eth1
192.168.128.0	255.255.192.0	124.3.2.1	eth1

En pratique les entrées peuvent être classées du plus grand masque de réseau au plus petit.

Route par défaut

 Il y a dans la majorité des cas, une route par défaut. Une route que l'on choisit si aucune entrée de la table de routage ne correspond.

Table de routage d'un routeur

Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

B - BGP, > - selected route, * - FIB route

K * 127.0.0.0/8 is directly connected, lo

C>* 127.0.0.0/8 is directly connected, lo

C>* 160.1.0.0/16 is directly connected, eth1

R>* 160.2.0.0/16 via 163.0.1.1, eth0, 00:37:51

B>* 161.0.0.0/16 via 160.1.0.1, eth1, 00:44:57

B 162.0.0.0/16 via 160.2.0.2, 00:31:04

R>* 162.0.0.0/16 via 163.0.1.1, eth0, 00:36:12

C>* 163.0.1.0/24 is directly connected, eth0

R>* 163.0.2.0/24 via 163.0.1.1, eth0, 00:45:06

R>* 192.168.1.0/24 via 163.0.1.1, eth0, 00:38:04

Exercice 18: construire la table de routage Pour la topologie ci-dessous, donnez les tables de routage des routeurs. Eth1: 40.0.0.1/24 Eth0: 40.0.0.2/24 Eth0: 30.0.0.2/24 Eth0: 30.0.0.3/24 Eth1: 50.0.0.3/24

Exercice 19: accès à Internet

• Un accès à Internet est maintenant accessible au travers du routeur R4.

• Compléter les tables de routage en conséquence.

| Eth0:40.0.0.2/24 | Eth1: 20.0.0.2/24 | R4 | R1 | Eth0: 30.0.0.3/24 | R3 | Eth1: 50.0.0.3/24 | R3 | Eth1: 50.0.0.

73

Exercice 20: déduire la topologie à partir d'une table de routage

On considère un routeur R1 ayant la table de routage suivante.

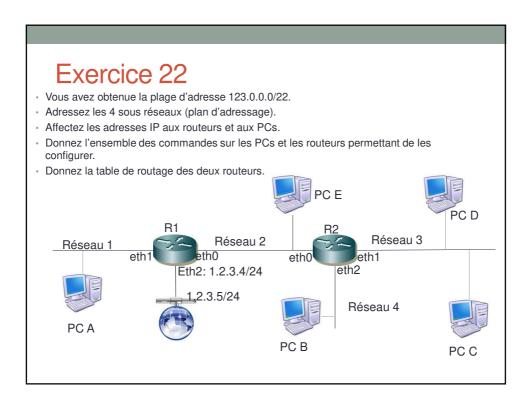
SubnetNumber	netmask	Next Hop
128.96.39.0/25	255.255.255.128	Interface 0
128.96.39.128/25	255.255.255.128	Interface 1
128.96.40.0 /25	255.255.255.128	128.96.39.2 (R2)
192.4.153.0/26	255.255.255.192	128.96.39.131 (R3)
0.0.0.0		128.96.39.3 (R4)

- 1. Combien d'interfaces possède ce routeur ?
- 2. Combien de routeurs existent dans ce réseau ?
- 3. Dessinez la topologie du réseau en faisant figurer les adresses réseau sur chaque sousréseau, les adresses IP de chaque interface des routeurs.
- $4. \quad Indiquez \ ce \ que \ fait \ R1 \ sur \ r\'eception \ d'un \ paquet \ adress\'e \ aux \ destinations \ suivantes :$

Adresse	destination
	128.96.39.10
	128.96.40.12
	128.96.40.151
	192.4.153.17
	192.4.153.96

Routage statique

- Rajouter manuellement des entrées dans la table de routage.
- Pour les petits réseaux
- Pour la route par défaut.

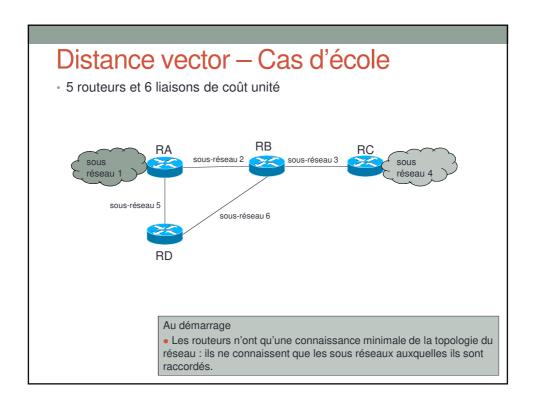

Sous linux

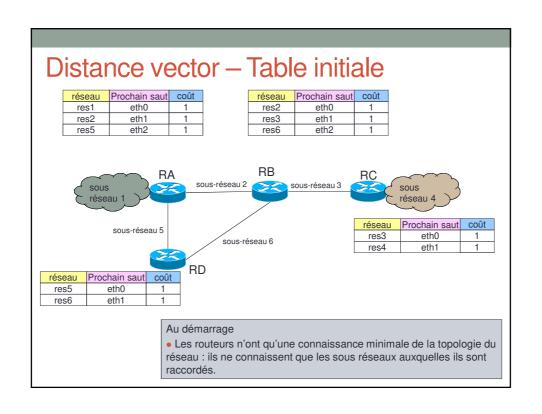
route add –net 10.1.3.0 netmask 255.255.255.0 gw 10.1.1.1 _a commande « io route » fonctionne également

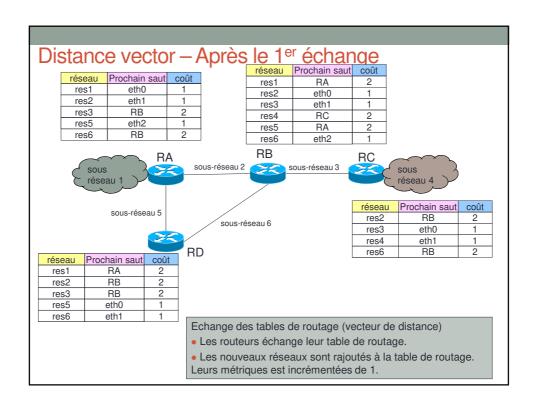
Sur un routeur cisco :

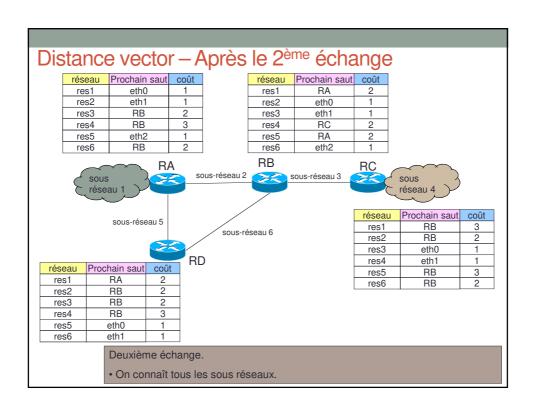
router(conf)#ip route 10.1.0.0 255.255.255.0 10.0.0.1 router(conf)#ip route 0.0.0.0 0.0.0.0 10.0.0.2 router(conf)# ip route 0.0.0.0 0.0.0.0 serial 0/2 router(conf)#exit

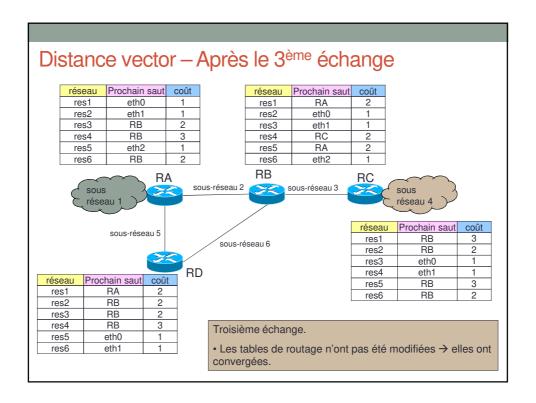
Exercice 21: routage statique – les commandes · Quelles sont les commandes à taper sur les routeurs pour avoir une table de routage à jour. Note: Vous prendrez le numéro du routeur comme valeur du dernier octet des adresses IP. Réseau 1 Cas 1 Réseau 5 Réseau 3 10.1.1.0/24 123.12.1.0/24 10.1.3.0/24 eth1 Accès Extérieur R2 R1 R4 Réseau 4 Réseau 2 eth1 10.1.2.0/24 10.1.4.0/24 Réseau 1 Réseau 3 10.1.1.0/24 10.1.3.0/24 Accès Extérieur eth1 Réseau 2 Réseau 4 10.1.4.0/24 10.1.2.0/24

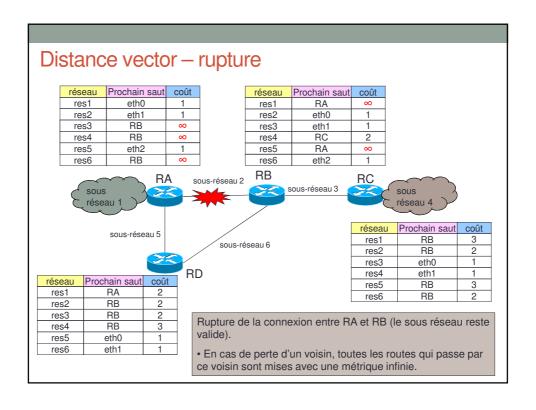

ROUTAGE DYNAMIQUE: PROTOCOLES VECTEUR DE DISTANCE

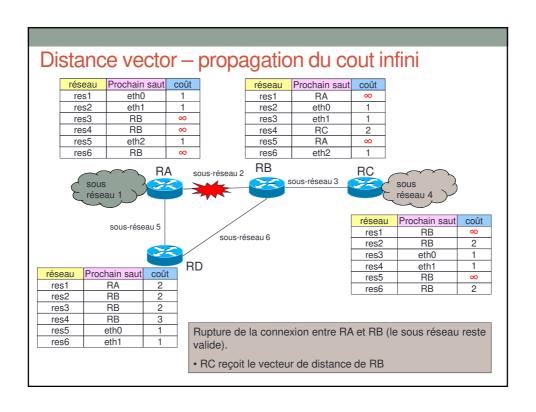

Le routage dynamique

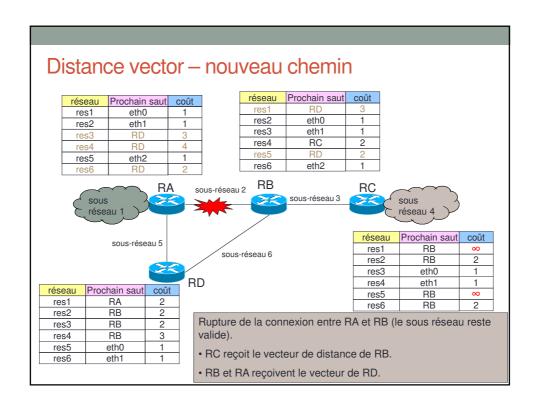

- Principe: mettre à jour les tables de routages à jour sans intervention manuelle
 - Apprentissage des sous réseaux et des routes de manière automatique
 - Apprentissage dynamique: les tables de routage sont mis à jour en fonction des changements de topologie:
 - Changement de routes (rupture de liens, chemin plus court, etc.)
 - · Ajout de nouveau réseau
 - · Suppression de réseaux plus accessibles


Distance vector - Principes


- Les protocoles de type « Distance vector » sont basés sur des algorithmes développés par Bellman-Ford
- Le terme « distance vector » vient du fait que les routes sont annoncées au moyen de vecteurs (destination, distance), où distance est une métrique (le nombre de sauts pour atteindre la destination)
- Les routeurs diffusent <u>régulièrement</u> à leurs voisins leurs tables de routage (destination – coût)
- Un routeur qui reçoit ces informations compare les routes reçues avec ses propres routes connues et met à jour sa propre table de routage

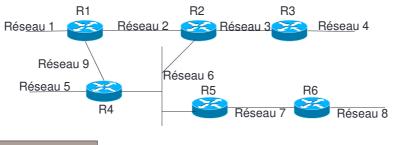






Règles

- A la réception d'un sous réseau venant d'un voisin
 - On rajoute celle-ci si on ne la connaît pas encore
 - Sinon, on compare la métrique à celle de la table de routage
 - si plus court, on prend en compte la nouvelle route dans la table de routage
 - 2. si plus long mais provenant du prochain saut, on met à jour la métrique dans la table de routage
 - 3. Sinon, on ne change rien.



Algorithme vecteur de distance

- Échange régulier des tables de routage
- Simplicité de l'algorithme
- Convergence lente
- Métrique basique (nombre de sauts)
- Boucles de routages.

Exercice 22: Distance Vector cas simple

- Soit la topologie suivante:
 - 1. Donnez les tables de routages initiales.
 - 2. Donnez les vecteurs de distance lors du premier échange. Quelles sont alors les tables de routages?
 - 3. Donnez les vecteurs de distances des échanges 2, 3 et 4. Quelles sont alors les tables de routages?

Réseau X: 10.0.x.0/24

Exercice 23: boucle de routage

- · On considère la topologie ci-dessous.
- · Les tables de routages sont censées avoir convergées.
 - Donnez les tables de routages des routeurs.
 - On suppose que le lien entre les routeurs R1 et R2 est rompu.
 - Quelle est la table de routage et le vecteur de distance de R2?
 - On suppose que R3 émet son vecteur de distance avant R2. Déroulez le scénarios des échanges des vecteurs de distance et de l'évolution des tables de routage de R2 et R3.
 - Si il y a un problème, proposez une solution.
 - · La solution proposée est elle toujours efficace?

R	NIP				
	outing Inforn	nation Pro	tocol		
	· ·				

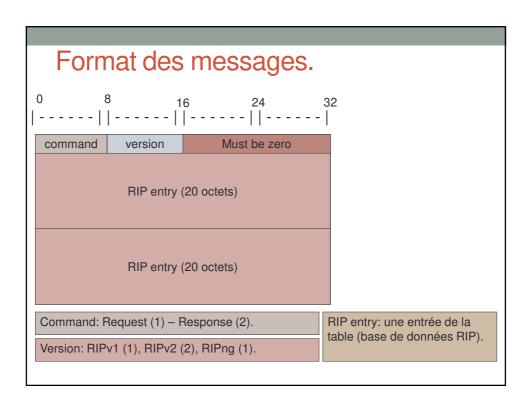
RIP: caractéristiques principales

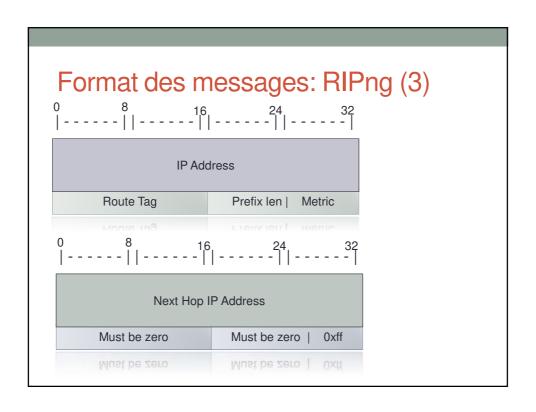
- RIP est un standard IETF
- Définit successivement dans les RFC suivants
 - RFC 1058 (RIPv1)
 - RFC 2453 (RIPv2)
 - RFC 2080 (RIPng)
- RIP:
 - · Technologie Distance Vector
 - VLSM (pour RIPv2 et RIPng)
 - · Plusieurs mécanisme pour éviter les boucles:
 - · Split horizon,
 - · Triggered update.

RIPv2: fonctionnement

- Messages encapsulés dans des datagrammes UDP (port 520).
- 2 types de messages:
 - Request (au démarrage pour faire converger les tables plus vites)
 - Response (contiennent des entrées de la table de routage).
- 2 types d'émission
 - Multicast: request, unsolicited routing update, triggered update
 - · Unicast: response to a request

RIP Database


 RIP conserve un certain nombre d'informations sur les sousréseaux

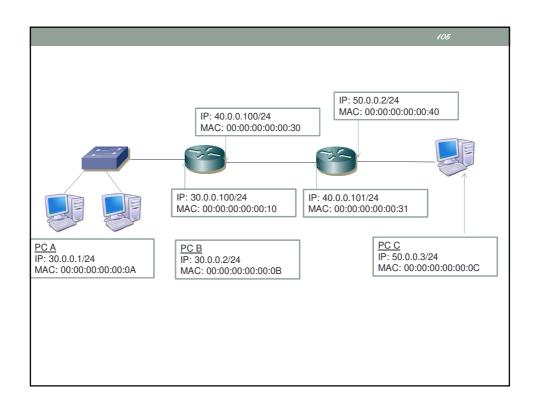

Network	Netmask	Next_Hop	Metric	Route change flag	Time_out	Garbage collection
129.1.10.0	255.255.255.0	111.1.1.1	3	0	150	120
129.2.20.0	255.255.255.0	111.1.1.1	5	0	170	120

Route change flag: indique si la route a été modifié récemment.

Timeout: temps après lequel le sous réseau sera considéré inatteignable.

Garbage Collection: temps durant lequel le réseau avec une métrique infinie reste dans la table.

Echanges des messages


- Un message request peut être émis lorsqu'un routeur veut obtenir rapidement les informations de ses voisins.
- Un message response est émis
 - Toutes les 30 sec (unsollicited response).
 - · Après une requête d'un voisin
 - Lors d'un triggered update.

Exercice 24: RIP

 Soit la table RIP ci-dessous. On suppose que l'on reçoit le message cidessous 4 secondes après (et rien d'autre) de la part de 111.1.1.1.
 Décrivez la nouvelle table et les actions opérés par le routeur.

Network	Netmask	Next_Hop	Metric	Route change flag	Time_out	Garbage collection
129.1.10.0	255.255.255.0	111.1.1.1	3	0	150	120
129.2.20.0	255.255.255.0	111.1.1.1	5	0	170	120
19.3.2.0	255.255.255.0	111.1.1.1	5	0	3	120
111.1.1.0	255.255.255.0	-	1	0	180	120

IP Address	Netmask	Next Hop	Metric
129.1.10.0	255.255.255.0	0.0.0.0	2
129.2.20.0	255.255.255.0	0.0.0.0	7
15.15.15.0	255.255.255.0	0.0.0.0	1

